
Typing the Wild in Erlang
Nachiappan Valliappan

Chalmers University
Sweden

nachivpn@gmail.com

John Hughes
Chalmers University, Quviq AB

Sweden
rjmh@chalmers.se

Abstract
Developing a static type system suitable for Erlang has been
of ongoing interest for almost two decades now. The chal-
lenge with retrofitting a static type system onto a dynami-
cally typed language, such as Erlang, is the loss of flexibility
in programming offered by the language. In light of this,
many attempts to type Erlang trade sound type checking
for the ability to retain flexibility. Hence, simple type errors
which would be caught by the type checker of a statically
typed language are easily missed in these developments.
This has us wishing for a way to avoid such errors in Erlang
programs.
In this paper, we develop a static type system for Erlang

which strives to remain sound without being too restric-
tive. Our type system is based on Hindley-Milner type in-
ference, however it—unlike contemporary implementations
of Hindley-Milner—is flexible enough to allow overloading
of data constructors, branches of different types etc. Fur-
ther, to allow Erlang’s dynamic type behaviour, we employ
a program specialization technique called partial evaluation.
Partial evaluation simplifies programs prior to type checking,
and hence enables the type system to type such behaviour
under certain restricted circumstances.

CCS Concepts • Software and its engineering→ Func-
tional languages; Polymorphism; General programming
languages; Data types and structures;

Keywords Erlang, Type Inference, Partial Evaluation

ACM Reference Format:
Nachiappan Valliappan and John Hughes. 2018. Typing the Wild
in Erlang. In Proceedings of the 17th ACM SIGPLAN International
Workshop on Erlang (Erlang ’18), September 29, 2018, St. Louis, MO,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3239332.3242766

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Erlang ’18, September 29, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5824-8/18/09. . . $15.00
https://doi.org/10.1145/3239332.3242766

1 Introduction
Erlang is a dynamically typed concurrent functional pro-
gramming language popular in distributed applications. Since
Erlang is dynamically typed by design, the Erlang compiler
does not type check Erlang programs during compilation.
It allows the successful compilation of ill-typed programs
which would be rejected by a Haskell or ML compiler. As a
result, simple type errors which can be detected at compile
time are not discovered until the program is executed.

Dialyzer is a static analysis tool which helps identify such
type errors. It has been widely adopted by the Erlang commu-
nity, and type specifications understood by the Dialyzer can
be found in most Erlang/OTP libraries these days. The type
system employed by Dialyzer is based on the idea of success
typing [7], which means that it does not report false posi-
tives (type errors in a well-typed program). The type checker
takes an optimistic approach and assumes that a program is
well-typed unless it can prove otherwise. If it cannot prove
a type error, it accepts the program—even if the program is
unsafe—and may hence miss type errors. For example, the
following ill-typed program, which crashes at run-time on
the invocation of find/0, is accepted by Dialyzer.

-type maybe(A) :: none | {ok,A}.

lookup(K,[]) -> none;

lookup(K,[{K,V}|_]) -> {ok,V};

lookup(K,[_|KVs]) -> lookup(K,KVs).

find() -> {ok ,"s"} = lookup (0 ,[{0 ,1}]).

The purpose of type checking is to prevent programs from
crashing at runtime. However, determining whether a pro-
gram will crash at runtime is undecidable. Static type check-
ers take a conservative approach and reject more programs
than necessary to guarantee the absence of runtime type
errors. Dialyzer, on the other hand, does not provide this
guarantee. As observed earlier, it accepts programs which
may crash at runtime.
The success of static type checkers for many program-

ming languages makes us wonder if it is possible to develop
one for Erlang without being too restrictive. Languages such
as Java and C++ implement static type checking by making
the programmer specify explicit type annotations. But an-
notations can get tedious and often clutter the code. Instead,
languages such as Haskell and ML implement type inference
to free the programmer from having to specify excessive

https://doi.org/10.1145/3239332.3242766
https://doi.org/10.1145/3239332.3242766
https://doi.org/10.1145/3239332.3242766

Erlang ’18, September 29, 2018, St. Louis, MO, USA Nachiappan Valliappan and John Hughes

annotations. Type inference implemented by Haskell and
ML are both based on a type system popular for this purpose:
the Hindley-Milner type system [2] [9].
Most successful adaptations of the Hindley-Milner type

system to practical functional programming languages im-
plement Algebraic Data Types (ADTs). ADTs are a feature
which allow the programmer to define new types using user
defined data constructors. Here’s an example of an ADT
which defines a tree data type in Haskell:

data Tree a = Nil

| Node a (Tree a) (Tree a)

Nil and Node are constructors of the tree data type. Nil
is a nullary constructor, which constructs a term of type
Tree a, and Node is a three argument constructor, which
constructs a term of type Tree a when given a term of type
a and two terms of type Tree a as arguments. ADTs give
the programmer control over the types of a program, and
constructors of an ADT act as tags for type inference.

Erlang, however, does not have ADTs. Data construction
is typically done using tagged tuples. A tagged tuple is a
tuple, where an atom is used as the first field to identify
a specific construction. If the construction contains only
an atom, then the atom is used in place of a tagged tuple.
In the following example, nil and node are atoms used to
identify constructions of the tree data structure (we’ll use
this example multiple times in this paper):

findNode(_,nil) ->

false;

findNode(N,{node ,N,Lt,Rt}) ->

true;

findNode(N,{node ,_,Lt,Rt}) ->

findNode(N, Lt) orelse findNode(N,Rt).

Onemay consider such atoms as constructors and the remain-
ing fields of a tagged tuple as arguments to the constructor.
By treating this programming pattern as data constructor
applications, it is possible to apply a constructor based type
system.
The real challenge, however, is that none of the Hindley-

Milner implementations allow constructors to be overloaded,
and applying this restriction to Erlang can be very limiting.
For example, consider the construction {ok,Value}. It is
used across programs in many different contexts. Forcing
the ok constructor to belong to one specific ADT definition
can not only be cumbersome, but also practically impossible
as it would require a lot of Erlang code to be re-written. For
this reason, most notable efforts to typing Erlang [6][7][8]
reject the Hindley-Milner type system.
Instead, they opt for type inference based on subtyping.

But experience shows us that subtyping doesn’t mix well
with type inference. Type signatures inferred in a subtyping
system can often be large and hard to understand—which
defeats the whole purpose of a type checker. In practice,

Dialyzer (which uses subtyping) also appears to be much
slower than a Haskell/ML type checker.
Restricting constructors to have a unique type has been

considered essential in a Hindley-Milner type system. How-
ever, in this paper, we show that it is possible to type over-
loaded data constructors and yet retain the type inference
properties of a Hindley-Milner type system. We present an
inference based type system for Erlang with a form of adhoc
polymorphism for typing overloaded constructors. This leads
to much faster type checking and comprehensible type sig-
natures and errors. The type system and its implementation
are discussed in section 3.

A static type system based on type inference alone can be
quite restrictive. Erlang’s flexible programming utilities such
as list_to_tuple/1, element/2, is_function/1, etc., can-
not be assigned a type easily in a Hindley-Milner type system.
The difficulty arises from their dynamic type behaviour, i.e.,
the type of the function depends on the value of their argu-
ments (which may not be known until runtime). To solve
this problem, we employ an evaluation technique called par-
tial evaluation [5]. Partial evaluation reduces an expression
when one or more of its components can be computed at
compile time. The reduced expression is often simpler and
the dynamic type behaviour may be removed. Our type sys-
tem uses partial evaluation to simplify certain expressions
before typing them, and hence allows restricted forms of
dynamic type behaviour in programs. This is discussed in
further detail in section 4.

To develop an intuition for the types inferred by the type
checker, we illustrate the type checker on various examples
in section 2. The type checker has also been applied to a
few small libraries, including a couple of OTP libraries. The
initial results look promising, and are discussed further in
section 5.
Applying Hindley-Milner to Erlang requires us to make

certain simplifying assumptions (such as homogeneous lists)
and place restrictions which are typically absent in Erlang
programming. The use of ADTs for typing means that the
programmer must supply additional type definitions for
compound data types. Another important limitation is that
our type system does not type interprocess communication.
These limitations are discussed in section 6.

Our type system defines a flavour of typed Erlang pro-
gramming which looks much like programming in Haskell.
Our effort shows that it is possible to apply a type checker
based on sound typing principles to Erlang without making
a radical change to the programming style. Two key rea-
sons for this are the typing of overloaded constructors in
Hindley-Milner, and the application of partial evaluation.
Overloaded constructors free the programmer from worry-
ing about defining context specific constructor names, and
partial evaluation helps retain Erlang’s flexibility (when ex-
pressions can be reduced at compile time).

Typing the wild in Erlang Erlang ’18, September 29, 2018, St. Louis, MO, USA

2 Erlang Type Inference, by Example
Type inference computes a type for a function, given the
function’s body as an input. In this section, we run the type
checker on various examples and discuss the inferred types.
These examples illustrate the features of the type checker,
which are discussed in later sections. This section serves as
an informal introduction to type signatures and type infer-
ence.

2.1 Lists
The following Erlang function appends two lists and returns
the resulting list.
append ([H|T], Tail) ->

[H|append(T, Tail)];

append ([], Tail) ->

Tail.

The type checker infers the type:

append/2 :: ([A], [A]) → [A]

Here, A is a polymorphic type variable which indicates that
list elements can be of any type. [A] is the type of a list where
all elements are of type A (we implement homogeneous lists
in our type system, and hence all elements of a list must be
of the same type). The inferred type signature for append
states that the function accepts two arguments of type [A]
and returns a list of type [A].

The inferred type of append is polymorphic over the type
variable A, meaning that it can be used on any two lists of
the same type. When it is applied to two lists of a specific
type, the type variable A is instantiated with the type of the
elements in the lists. For example, when it’s applied to lists
of type [boolean()], A is instantiated with boolean(), and the
type of append is specialized to ([boolean()], [boolean()]) →
[boolean()].

To understand how the type checker infers this type, note
that the second function clause returns the second argument
of the function. Hence, the return type of the function must
be the same as the type of the second argument. Moreover,
the first clause appends the head of the first argument list to
the result of append, and so the first argument must be of
the same type as the result. Using this information, the type
checker infers that the arguments and the return value must
all be of the same type.

2.2 Numeric Types
In Erlang, there are two types of numbers: integers and floats.
Some operations (such as div) are allowed to operate only on
integers, whereas other operations are overloaded over both
integers and floats (such as + and *). Our type system allows
overloading by implementing a simple type class system for
Erlang (inspired by Haskell’s type classes). Type classes allow
us to assign polymorphic types to operators, restricted by a
constraint. For example, the + operator (which is overloaded

over integers and floats) is assigned the type:

(+) :: Num A ⇒ (A,A) → A

where Num A is a constraint on the type A that asserts that
A must be a numeric type (that is, an integer or a float).
Note that both the operands are expected to be of the same
numeric type—a simplifying assumption in our type system.
WhenA is instantiated with a concrete type in an application
of +, the type checker checks whether the type constraint
can be solved. If so, the application is accepted, otherwise it
is rejected with a type error.

For instance, in the expression 40.0 + 2.0, A is instanti-
ated with f loat(), and the type constraint is specialized to
Num f loat(). The type checker knows that Num f loat() is
solvable, and hence accepts the expression as well-typed. IfA
is instantiated with an non-numeric type, such as boolean(),
the type checker reports a type error as it cannot solve the
constraint Num boolean().
Let’s look at the type assigned to an expression which

uses +. Consider this function:

sum ([]) -> 0;

sum ([X|Xs]) -> X + sum(Xs).

It computes the sum of a given list. In its second clause, the +
operator is applied to an element of the argument list and the
result of sum. Since the type of + requires the arguments and
the result to have the same numeric type, then the elements
of the list and also the computed sum must be of the same
numeric type. Using this information, the type checker infers
the type:

sum/1 :: Num A ⇒ ([A]) → A

This type correctly states that sum maybe used for either
integers or floats.
An operator restricted to arguments of specific numeric

type, such as div which is restricted to integers, is assigned
a type as follows:

div :: (inteдer (), inteдer ()) → inteдer ()

On the other hand, the division operator /, which can be
applied to operands of any numeric types, is assigned a type
using type constraints:

(/) :: (Num A, Num B) ⇒ (A,B) → f loat()

Note that the operands need not be of the same type—they
may be an integer and a float, for instance. As an example,
consider the following average function:

average(Xs) -> sum(Xs) / length(Xs).

It uses the / operator to divide the sum of a list (a numeric
type) by its length (an integer) to return a float. The type
checker infers the type:

averaдe/1 :: Num A ⇒ ([A]) → f loat()

Erlang ’18, September 29, 2018, St. Louis, MO, USA Nachiappan Valliappan and John Hughes

2.3 Algebraic Data Types
ADTs are used to define new types using user defined con-
structors, which may optionally accept a number of argu-
ments. An ADT definition must declare its constructors
and the types of their arguments. In the following exam-
ple, tree(A) is an ADT parametrized over the type A.

-type tree(A) :: nil

| {node , A, tree(A), tree(A)}.

This is the Erlang version of the Haskell tree ADT we saw
earlier. The nullary constructor nil can be defined as an
atom (as shown), or as a single element tuple (such as {nil}).
The three argument constructor node is defined as a four
element tuple, where the first element is the atom node and
the remaining elements are the types of its arguments.
A term of an ADT can be constructed by providing the

arguments to a constructor, also called a constructor appli-
cation. When a type checker encounters an atom or a tuple
whose first element is an atom, it considers it as a construc-
tor application—provided the atom has been defined as a
constructor in some ADT.

Now, let’s understand type inference for ADTs. Recollect
the findNode/2 example from section 1. The findNode func-
tion pattern matches on the constructors of the tree data type
to search for a given node value and returns a boolean in-
dicating success or failure. Since the second clause of the
findNode function matches the given value directly with a
value in the node of a tree, the type checker infers that the
values of the nodes in the tree must be of the same type as
the given value. As a result, the inferred type of this function
is:

f indNode/2 :: (A, tree(A)) → boolean()

Note that the ADT definition must be provided for this type
to be inferred. In the absence of an ADT definition for the
above example, nil and node are simply treated as atoms. As
a consequence, the type checker would reject the findNode
function as it expects the arguments to have the same type
on all clauses—a property which fails to hold for the second
argument in this case.

2.4 Overloaded Data Constructors
Overloaded constructors make type inference tricky. Con-
sider the following example where the constructor nil could
construct a list or a tree.

-type list(A) ::

nil | {cons , A, list(A)}.

-type tree(A) ::

nil | {node , A, tree(A), tree(A)}.

empty () -> nil.

flattenTree(nil) ->

[];

flattenTree ({node ,N,Lt,Rt}) ->

flattenTree(Lt) ++ [N|flattenTree(Rt)].

In the case of flattenTree, it is easy to see that it operates
on trees, and not on lists, because the second function clause
pattern matches on node—which only appears in the tree
data type. Hence, flattenTree is assigned the type:

f lattenTree/1 :: (tree(A)) → [A]

But what should the inferred type of empty be? Should
the return type be a list or a tree? Since the type checker
lacks the reason to make a choice, it infers a type allowing
empty to be used with either type:

empty/0 :: (D ∼ {tree(A), list(B)}) ⇒ () → D

This type denotes that empty is a nullary function which
returns a value of type D, under the constraint that D is
a tree or a list. When it’s called to return a list, the type
constraint gets specialized to (D ∼ {list(B)}), and hence
D gets instantiated with list(B). Similarly, in the expres-
sion flattenTree(empty()), since flattenTree expects
a tree argument, the type constraint gets specialized to (D ∼

{tree(A)}, and hence D is instantiated with the type tree(A)
to yield the type of the expression as [A].

2.5 Messaging
At the heart of Erlang’s concurrency model lies message
passing between processes. Our type system does not check
whether the types of the messages sent to a process match
the types of the messages it expects. However, messaging
primitives such as ! (send), receive, spawn/1, etc., are used
extensively in Erlang, and they must be assigned a type in
order to type check Erlang programs. This section illustrates
the types assigned to such primitives and the inferred types
of expressions which use them.

spawn/1, which is used to spawn nullary functions, is
assigned the type:

spawn/1 :: (() → A) → pid()

where the return type pid() is the type of a process identifier
(or pid). Our type system does not differentiate between pids
of different processes, and all pids are assigned the type pid().
The ! operator, which sends a message to a process, is

assigned the type:

(!) :: Padd A ⇒ (A,B) → B

where Padd A is type constraint over the first argument
of type A (the destination), and the return type B is also
the type of the second argument (the message) . Padd (for
Process address) is a type constraint which restricts the first
argument to a pid, an atom (a registered name) or a tuple of
two atoms (registered name and node).
The receive expression, on the other hand, is similar to

a case expression, but is used to pattern match over mes-
sages in the inbox of a process. The type checker expects

Typing the wild in Erlang Erlang ’18, September 29, 2018, St. Louis, MO, USA

all the patterns of the receive expression to be of the same
type. This may initially appear to be a limitation as it is quite
common to pattern match over different types of messages.
However, this can be easily overcome by adding an ADT def-
inition which combines the types of the messages. Consider
the following example:

-type request () :: {ping , pid()}

| {get_sum ,pid(),integer(),integer ()}.

server () ->

receive

{ping , Ping_PID} ->

Ping_PID ! {pong , self ()};

{get_sum , Pong_PID , X, Y} ->

Pong_PID ! {sum , X + Y}

end ,

server ().

The receive expression is well-typed because ping and
get_sum are defined as constructors of the same type in
the request() ADT, hence making the patterns to be of the
same type. Note that there is no such requirement for the
clause bodies of the receive expression. The type of the first
clause body is {atom,pid()} and that of the second clause
body is Num A ⇒ {atom,A}—clearly different types.
The clause bodies of case, if and receive expressions

are not expected to be of the same type unless their return
value is used. In the above example, the value returned by
the receive expression is discarded, and hence the bodies
need not be of the same type. When the return value is used,
all bodies are expected to be of the same type—in order to
assign a single type to the returned value.

3 Implementing Typing Inference
The original Hindley-Milner type system (as in [2], for in-
stance) is far too simple for a real programming language
such as Erlang. For example, it does not support overload-
ing, and as we’ve seen earlier, overloading is required to
type Erlang’s functions and data constructors. Programming
languages such as Haskell and ML, which base their type
system on Hindley-Milner, use a variation of it by adding
several extensions. Haskell’s type system allows overloading
of functions by implementing a form of adhoc polymorphism
called type classes. However, none of these languages allow
data constructors to be overloaded, and this is an absolute
requirement for typing Erlang.
The type system we present for Erlang is also based on

Hindley-Milner, but it supports overloading of both func-
tions and data constructors. For overloading functions, we
implement a type class system similar to Haskell’s. Whereas,
for overloading constructors, we implement a constraint
system closely related to type classes.
In this section, we are concerned with the details of im-

plementing the type system. We first introduce the basic

Hindley-Milner type system (section 3.1 - 3.2), then gradu-
ally add more features towards overloading functions and
constructors (sections 3.3 - 3.6), and finally present a solution
for typing records in Erlang (section 3.7).

3.1 Overview of Hindley-Milner
In this section, we introduce key concepts of the Hindley-
Milner type system such as type variables, unification and
generalization. Readers familiar with Hindley-Milner may
skip this section.

Type variables are central to the Hindley-Milner type sys-
tem. A type variable represents an unknown type. It can be
instantiated with a base type (such as inteдer () or boolean())
or left as it is itself until more information is available, i.e, a
type variable is also a valid type. The types in Hindley-Milner
can be described using the grammar:
⟨type⟩ ::= ⟨base⟩
| ⟨tvar⟩
| (⟨type⟩,..,⟨type⟩)→ ⟨type⟩

where ⟨base⟩ represents a base type, ⟨tvar ⟩ represents a
type variable, and (⟨type⟩, .., ⟨type⟩) → ⟨type⟩ represents a
function type.

Instantiation of type variables is done using a substitution.
A substitution is as a mapping of type variables to types. The
mapped variables are called the domain of the substitution
and the types it maps to are called the co-domain of the sub-
stitution. A substitution σ is applied to a type t—denoted as
σ (t)—by replacing all free occurrences of the type variables
in t belonging to the domain of σ by their corresponding
values in the co-domain of σ . For example, when the substi-
tution {X 7→ boolean()} is applied to the the type (X) → X ,
it yields the type (boolean()) → boolean(). Note that the no-
tion of applying a substitution is the standard one which
replaces only free variables and accounts for name capture.

During type inference, a type is considered to be partially
known if it contains type variables. Unification is a process
which takes two partially known types that are expected to
be equal and instantiates the type variables in them to ensure
that it is indeed the case. For example, unification of the
types (X) → X and (boolean()) → Y yields the substitution
{X 7→ boolean(),Y 7→ boolean()}, which when applied to
the types equalizes them. Formally, unification is the process
of computing a substitution σ that equalizes two types t1
and t2 when applied to them, as in, σ (t1) = σ (t2). Unification
is used by type inference to ensure that two types are of the
same type. For example, it is used to ensure that both sides
of a match expression are of the same type, or to ensure that
all patterns of the case expression are of the same type, etc.
The unifying substitution is also called the unifier. Note

that there may be several (or no) unifiers for any two given
types. Type inference uses the most general unifier (mgu) to
compute the most general type. A substitution σ is said to
be the mgu of two types if for every other unifier σ ′ of the

Erlang ’18, September 29, 2018, St. Louis, MO, USA Nachiappan Valliappan and John Hughes

types, there exists γ such that σ ′ = γ ◦ σ , where γ ◦ σ is the
composition of the two substitutions and is defined as γ (σ (t)).
That is, σ is the mgu if all other unifiers can be expressed in
terms of it.
Another important feature of the Hindley-Milner type

system which is used to allow generic programming is poly-
morphism. Intuitively, a function is polymorphic if it can be
used in different contexts with different types. To achieve
this, the polymorphic function is assigned a generic type
schema. A type schema acts as a representation of all the
valid types that the function can be assigned. A type schema
can be described using the grammar:
⟨schema⟩ ::= ⟨type⟩
| ∀ ⟨tvar⟩.⟨schema⟩

To generate a type schema, type inference employs a tech-
nique called generalization. Generalization converts the in-
ferred type of a function to a type schema. An example of
generalization is the conversion of (T) → T to ∀T .(T) → T .
Generalization is achieved by binding all the type variables
in a type that do not occur freely in the environment (which
assigns types to free variables of a term).

When the function is applied in a certain context, the type
schema is instantiated to yield the context specific type of
the function. A type schema is instantiated by replacing all
the bound variables with fresh type variables. For example,
instantiation of ∀T .(T) → T yields (P) → P for some fresh
type variable P .

3.2 Beyond Hindley-Milner
Type inference for Erlang requires techniques well beyond
simple Hindley-Milner. For instance, a recursive function in
Hindley-Milner is defined using an explicit fix point com-
binator. Some modern implementations of Hindley-Milner,
such as OCaml [10], for instance, require the programmer
to annotate recursive functions explicitly. But Erlang has no
such construct as this problem is irrelevant for a dynami-
cally typed language. Hence, we need an approach to type
inference that treats recursive and non-recursive functions
alike. The standard solution to this problem is to assign a
fresh type variable to the function in the environment it is
being type checked in, and then unify the inferred type with
the assigned type. This way, the function has a type when its
type is being inferred and it is also enforced to be the same
as the inferred type.
The case of mutually recursive functions is a little more

complex. OCaml requires that programmers define mutually
recursive functions using the same recursive let. Haskell,
on the other hand, has no such requirement. Programmers
can write mutually recursive bindings freely without any
annotations or grouping. Haskell achieves this by doing a
kind of dependency analysis to group all mutually recur-
sive functions and then performing type inference on them
in the order of their dependency. Our implementation is

based on Haskell’s technique. For further details, we refer
the interested reader to the implementation of Haskell’s type
inference [4].

3.3 Type Classes
Another requirement beyond Hindley-Milner to type Erlang
is the overloading of operators and functions. To achieve
this, we implement a simple type class system for Erlang. In
this section, we present a brief of overview of type classes
and how they are implemented. For more details, we refer
the interested reader to Haskell’s implementation of type
classes [4] (which is the basis for our implementation).

Type classes are essentially a way to group types. A type
class has a name and a group of types which are referred to as
its instances. For example, Num is a type class, and inteдer ()
and f loat() are its instances. In Haskell, the programmer can
define new type classes and extend existing ones. However,
in our type system, type classes are a purely built-in feature.
The list of all valid type classes and their instances (also
called the type class premise) is a pre-defined constant. For
the reader familiar with Haskell’s type classes, also note that
there is no class hierarchy in our system.
A type class constraint (which we’ve seen earlier in our

examples) contains a type class and a type variable, and it
specifies that the type which replaces the type variable must
be an instance of the type class. For example, the constraint
Num A ⇒ ... specifies that a type which replaces A must be
an instance of Num.

A type class constraint over the type of a function is cou-
pled along with the type in its type schema 1. To add type
constraints to a type schema, we modify the type schema
grammar from Hindley-Milner to:
⟨schema⟩ ::= ⟨type⟩
| ∀ ⟨tvar⟩. [⟨constraint⟩]. ⟨schema⟩

⟨constraint⟩ ::= ⟨class⟩.⟨tvar⟩
When a type schema is instantiated, the type variables in

the constraints are also replaced with fresh type variables.
For example, instantiating the type schema ∀T .Num T ⇒

T → T , yields a type U → U and a type constraint Num U
(for some fresh variableU).

All type class constraints which arise from a function’s
body during type inference are collected as class predicates to
be solved later. A class predicate {class, c, i} is an assertion
that the type i is an instance of the class c . For example,
the predicate {class, ”Num”, inteдer } asserts that the type
inteдer () is an instance of the class Num. The difference
between a predicate and a class constraint is that the type i
in a predicate need not be a type variable. Moreover, as we
will see later, class predicates are not the only predicates.

1In earlier sections, the inferred type signatures for functions which contain
type class constraints are actually type schemas. Typically, type schemas are
also considered as types (by excluding the quantifiers) as a simplification.

Typing the wild in Erlang Erlang ’18, September 29, 2018, St. Louis, MO, USA

To understand the collection of type class constraints as
predicates, consider the average/1 function which we saw
earlier:
average(Xs) -> sum(Xs) / length(Xs).

The instantiation of the / operator’s type schema generates
two type class constraints (one on each operand): Num A
and Num B, whereA is the expected type of the first operand
and B is the expected type of the second operand. These type
constraints are collected as the following predicates:

{class, ”Num”,A}, {class, ”Num”,B}
Now, suppose that the inferred type of sum(Xs) isNumT ⇒

T for some type variable T . Since the inferred type of an ex-
pression is unified with the expected type, type inference
unifies A with T , and as a result instantiates A with T . Simi-
larly, since the inferred type of length(Xs) is inteдer (), B
is instantiated with inteдer (). These instantiations specialize
the predicates to:

{class, ”Num”,T }, {class, ”Num”, inteдer ()}
The collected predicates are then solved by simply elimi-
nating all valid predicates which follow directly from the
premise. Hence, {class, ”Num”, inteдer ()} is removed, leav-
ing the predicate:

{class, ”Num”,T }
The remaining predicates are then generalized along with
the type to yield the type schema of the subject function.
In this case, {class, ”Num”,T } is generalized along with the
inferred type of the function ([T]) → f loat() to yield the
type schema ∀T .Num T ⇒ ([T]) → f loat()—which we saw
as the inferred type of average earlier.

3.4 ADTs
To implement ADTs in the type system, we need a way to add
user defined types to the type system, a mechanism to assign
these types to user defined constructors, and an inference
algorithm to infer the types of data constructor applications
in expressions. We address these needs in this section.

User defined types, such as tree(A), are added to the type
system using a type constructor. Just like a data constructor
accepts some data arguments to construct a data value, a
type constructor accepts some type arguments to construct
a type. It can be defined as an extension to the grammar of
types from the Hindley-Milner system as:
⟨type⟩ ::= ...
| ⟨constructor⟩ [⟨type⟩]

where ⟨constructor ⟩ represents the name of the type con-
structor, and [⟨type⟩] represents the list of type arguments.
For example, in the type tree(A), tree is the type constructor
and the type variable A is its argument.
A data constructor constructs a term of a user defined

data type when given some arguments. In this sense, a data
constructor is exactly like a function. Hence, it is assigned a

function type, where the argument types are the argument
types of the constructor and the return type is the type
defined by its corresponding ADT. In the tree ADT, nil is
assigned the type nil/0 :: () → tree(A), and node is assigned
the type node/3 :: (A, tree(A), tree(A)) → tree(A).

To implement type inference for data constructor applica-
tions, we must first understand how type inference is imple-
mented for function applications.
In a function application f (x1, ...,xn), the types of the

arguments given to f must match the arguments expected by
it, and the inferred type of the application must be the return
type of the f . To implement this, we first lookup the type of
the function f in the type inference environment, and then
we infer the types of the arguments. Let the inferred type of
the function be T and the inferred type of the arguments be
(A1, ...,An).T is then unified with the type (A1, ...,An) → V
(where V is a fresh variable) to yield a unifier σ . And finally,
the type of the application is the type V specialized using
the result of the unification, i.e., σ (V).

A data constructor application is similar to function appli-
cation. It merely has a different syntax {c,x1, ..xn}, where c is
the constructor and x1, ..xn are its arguments. If c is a unique
constructor of a data type, then c is assigned a single type
in the environment, and the treatment of the constructor
application is no different from function application. How-
ever, if c is overloaded, then it has more than one type in
the environment and the lookup for the type of c results
in list of types. Which one should be used for unification?
The treatment of the latter case requires more sophisticated
techniques, which is the focus of the next section.

3.5 Overloading Data Constructors
When the lookup of an overloaded constructor returns a (non-
empty) list of types [T1, ...,Tn], the type of the application
(A1, ...,An) → V (discussed in the previous section) may
unify with more than one of these types. Since we cannot
make a decision on exactly one type of [T1, ...,Tn] at the
time, we defer this unification by generating a new kind
of predicate called the deferred unification constraint (duc)
predicate:

{duc, (A1, ...,An) → V , [T1, ...,Tn]}

which asserts that the type (A1, ...,An) → V must eventually
unify with exactly one type from the list [T1, ...,Tn] (called
the candidate types).

Like class predicates, duc predicates generated during type
inference of a function are collected and then solved before
generalization. Solving them later—as in the case of class
predicates—allows us to use specializing information which
is generated during type inference. Once a duc predicate is
specialized, it may be possible to reduce the list of candi-
date types. If the candidate type can be reduced to exactly
one, then the duc predicate is solvable and the unification is
performed using the remaining candidate type. Otherwise,

Erlang ’18, September 29, 2018, St. Louis, MO, USA Nachiappan Valliappan and John Hughes

the duc predicate is generalized along with the type of the
function as a type constraint.
Now, consider type inference for the findNode example

(from section 1). The first clause has an overloaded construc-
tor nil as an argument, which generates the predicate:

{duc, () → V , [() → tree(A), () → list(B)]}

where () → V is the inferred type of the constructor appli-
cation. Notice how this type unifies with both the candidate
types (with unifiers {V 7→ tree(A)} and {V 7→ list(B)}, and
hence at this stage the predicate is not solvable. However,
the occurrence of the node constructor in the second clause,
instantiates V to tree(C) (the return type of node, for some
type variable C), hence specializing the predicate to

{duc, () → tree(C), [() → tree(A), () → list(B)]}

Evidently, only one of the candidates types is now unifiable,
and hence we may reduce the predicate to:

{duc, () → tree(C), [() → tree(A)]}

This predicate is now solvable, and the unification can be
performed to yield the substitution {C 7→ A}, which is then
applied to the inferred type (C, tree(C)) → boolean() to yield
the type (A, tree(A)) → boolean().

In the case where a duc predicate is not solvable, it is gener-
alized along with the type of the function as a type constraint
called the duc type constraint. The duc type constraint is
defined by extending the constraint grammar as:
⟨constraint⟩ ::= ...
| ⟨type⟩ ∼ {⟨type⟩,...,⟨type⟩}

A constraint T ∼ {T1,T2, ..Tn} specifies that the type T must
eventually unify with exactly one of the types T1,T2, ..Tn .
These constraints are, like type class constraints, added to
the type schema of a function. To do this we extend the type
schema grammar as:
⟨schema⟩ ::= ...
| ⟨constraint⟩ ⟨schema⟩

For example, in the case of empty() (from section 2.4), due to
lack of specializing information the generated duc predicate
is generalized along with the type of the function to yield the
type schema with a type constraint (D ∼ {tree(A), list(B)}).
However, unlike the case of class predicates, simply re-

taining the unsolved duc predicates as type constraints can
lead to loss of type information in the case where no special-
izing information is available. To understand this problem,
consider this example:
-type sr(R) :: {'EXIT ', pid(), R}.

-type cl(R) :: {'EXIT ', pid(), R}.

getReason({'EXIT ', _, Reason }) -> Reason.

The type {’EXIT’, pid(), R} represents an exit signal
sent by a process before its exit with its pid and reason for
exit. The getReason function here extracts the reason from

such a signal. Given the defined ADTs, one expects to see
the inferred type as:

дetReason/1 :: C ∼ {cl(B), sr (B)} ⇒ (C) → B

which specifies that the argument is of type C , where C
unifies with sr (B) or cl(B), and the return type is B. But,
without any simplification of duc predicates, the type checker
infers the type:

дetReason/1 :: (A,B) → C ∼

{(pid(),B) → cl(B), (pid(),B) → sr (B)}

⇒ (C) → B

The reason for this is that the generated predicates that
cannot be solved have simply been generalized as type con-
straints. Although it’s possible for us to see from the gener-
ated type constraints that A always unifies with pid() and
B always unifies with B, this information has not been ex-
ploited by the type checker to simplify the type constraint.
The problem is not just one about simplification. There

are cases in which not exploiting the information in the type
constraints can lead to missing type errors (a concrete exam-
ple of such a case can be found in section A.2). In the next
section, we discuss a solution to this problem by applying a
proof procedure technique from classical propositional logic.

3.6 Applying Dilemma Rule
In classical propositional logic, a proposition is either true or
false (but not both). An attempt to prove (or check) a propo-
sitional formula can hence branch over the truth of a propo-
sition in it. For example, to prove a formula p which contains
propositions p1, p2....pn , we assume that pi is either true or
false, and attempt to prove the formula for each assignment.
Doing this leads to the proof of the formula branching into
two separate proofs, which are called as branches of the
proof. If we do this for all pi , starting from 1 to n, then the
entire proof tree would like this:

p

p1 = true

p2 = true

... ...

p2 = f alse

... ...

p1 = f alse

p2 = true

... ...

p2 = f alse

... ...

where, at depth i of the tree, the proof branches over propo-
sition pi , and each assignment in the node of tree represents
an assumption over the value of a proposition.
Stålmarck’s proof procedure [11] is a method to prove

propositional formulas by applying various transformation
rules. One such rule of interest to us is called the Dilemma
rule. It states the following:

1. If one branch of the proof leads to a contradiction, then
the result is the outcome is the other branch

Typing the wild in Erlang Erlang ’18, September 29, 2018, St. Louis, MO, USA

2. If neither branch leads to contradiction, then the re-
sult is an intersection of truth assignments in both
branches

Informally, it simply states that if a proof of a formula branches
over the truth of a proposition in it, then the intersection of
information gained from both branches must be true.
Now, recall the definition of a duc predicate: a duc predi-

cate {duc,u, [t1, t2..., tn]} asserts that the type u eventually
unifies with any of the types from the list of types [t1, t2...tn].
In formal logic, the duc predicate— which is essentially a
nullary predicate or a proposition—can be expressed as a
propositional formula:

(u ∼ t1) ∨ (u ∼ t2) ∨(u ∼ tn)

where u ∼ ti specifies that u unifies with ti . Now, if we try to
prove this formula by branching, the proof tree would look
as follows:

(u ∼ t1) ∨ (u ∼ t2) ∨(u ∼ tn)

(u ∼ t1) (u / t1)

(u ∼ t2) ...

(u ∼ tn) ⊥

where (u / ti) denotes that u does not unify with ti . The
node (u ∼ ti) is a leaf in the proof tree (i.e., there is no
sub-tree under the node) because if (u ∼ ti) holds, then it is
already a valid solution for the entire formula. The rightmost
leaf is a contradiction (denoted by⊥) because there is no valid
solution to the formula under the assumption that (u / ti)
for all ti .
If a unification u ∼ ti in the leaf of a proof tree succeeds,

then we have a substitution σi . However, if it fails, then we
have reached a contradiction. Now, applying Dilemma rule
to this proof tree gives us the following rules:

1. If all branches lead to a contradiction, then none of
the candidate types are unifiable, and we have a type
error

2. If not all branches lead to contradiction, then the result
is the intersection of the substitutions which arise from
the successful unifications

Let’s look at an example of applying these rules. Consider
the (problematic) inferred type from the previous section
again:

дetReason/1 :: (A,B) → C ∼

{(pid(),B) → cl(B), (pid(),B) → sr (B)}

⇒ (C) → B

The duc predicate here can be expressed as:

{duc, (A,B) → C, [(pid(),B) → cl(B), (pid(),B) → sr (B)]}

which corresponds to the propositional formula:

(A,B) → C ∼ (pid(),B) → cl(B) ∨

(A,B) → C ∼ (pid(),B) → sr (B)

The successful unifications in the proof tree of this formula
yield the following substitutions:

{A 7→ pid(),C 7→ cl(B)}

{A 7→ pid(),C 7→ sr (B)}

By applying the Dilemma rule here, we get that the inter-
section of both the substitutions {A 7→ pid()} must always
hold. This substitution is then applied to the inferred type
to yield the type:

дetReason/1 :: (pid(),B) → C ∼

{(pid(),B) → cl(B), (pid(),B) → sr (B)}

⇒ (C) → B

which can be further simplified to the following (as the ar-
guments are always the same):

дetReason/1 :: C ∼ {cl(B), sr (B)} ⇒ (C) → B

The resulting type is the expected type, and this process is
the essence of applying the Dilemma rule to extract type
information from a duc predicate.
Here, we have illustrated the extraction of type informa-

tion from a single duc predicate and the simplification of
the inferred type constraint. In the presence of multiple duc
predicates, say d1,d2, ..dn , the propositional formula at the
root of the proof tree is a conjunction of all the propositional
formulas of the corresponding duc predicates: d1 ∧ d2 ∧ ..dn .
To solve this formula, we first solve d1 to yield a substitution
γ1. This substitution is then applied to d2 and then solved to
yield a substitution γ2 and so on until dn . The final resulting
substitution isγn ◦ ...γ2◦γ1. The main idea here is to compose
all the substitutions as all the propositions must be true for
the formula to be true.

3.7 Records
Records are treated as a special case of ADTs. The type sys-
tem generates an ADT definition for every record definition
in a module and its usage is handled in a special way. For
the following record:
-record(person ,{

name :: [char()],

age :: integer(),

id }).

the type system generates the following ADT:
-type person(A) ::

{person ,[char()], integer(),A}

The type of the generated ADT and its (only) constructor are
both given the same name as the record. The types of the
arguments to the constructor are the types of the fields in the

Erlang ’18, September 29, 2018, St. Louis, MO, USA Nachiappan Valliappan and John Hughes

record. If the type of the field is specified, as in the definition
of name and age, the specified type is used as the type of the
corresponding argument in the constructor. Otherwise, the
argument is assigned a type variable and the ADT type is
parametrized over this type variable. Since the type of id has
not been specified in the above record, the third argument
of the constructor is assigned a type variable A and the type
person is parametrized as person(A).

When a record is created, the type of a given value (avail-
able type) is unified with the type of the constructor argu-
ment corresponding to the field (expected type) . For example,
in the expression

#person{name="Nachi",age=25,id="c1"}

the available type of value of id is [char ()] and the expected
type is A. When A is unified with [char ()], the resulting
substitution instantiates A with [char ()], hence specializing
the type person(A) to person([char ()])—which is the type of
the above expression.

During creation, if the value of a field is not specified, then
the type of the default value is used as the available type.
However, if a default value is also not specified, then the
available type is undefined. This is because, the value must
be the atom undefined, and in our type system, the atom
undefined is assigned the type undefined. For example, the
expression

#person{name="Nachi",age =25}

has the type person(undefined). In light of this treatment, if
the type of a field has been declared and a default value has
not been specified, then its value must be provided when
the record is created. Otherwise, the expected type will fail
to unify with the available type undefined, and a type error
will be reported.

Note that the default value is used by the type checker to
determine the available type, and not the expected type. This
means, to assign a concrete type to a field, the type of the
field must be declared in the record definition irrespective
of whether a default value has been provided.
A record access returns a specific field, and hence the re-

turn type of a record access must be the type of the field.
To achieve this, we return the type of the argument corre-
sponding to the field in the constructor of the record type.
For example, the type of the record access Rec#person.age
is the type of the second argument to the constructor, i.e.,
inteдer ().

A record update returns a new record by changing the
value of one or more fields in the original record. If the type
of a field has been declared in the record definition, then the
updated value must be of the same type as the declared type.
Otherwise, the updated value maybe of a different type. For
example, consider the following record update:

updateId(Rec ,ID) ->

Rec#person{id=ID}

Here IDmay be of a different type from that of Rec#person.id.
Since we want to allow the change in type of the field id,
this function is assigned the type

updateId/2 :: (person(A),B) → person(B)

This is achieved by inferring the type of Rec and replacing
the type of the updated field with the inferred type of the
new value. In this case, the inferred type of Rec is person(A),
the inferred type of ID is B, and the result type of the updated
expression is person(B) (where A has been replaced by B).

4 Partial Evaluation
Type inference alone isn’t enough to type Erlang. For exam-
ple, consider the list_to_tuple/1 function. What should
its return type be? For a list of size n given as an argument,
it returns a tuple of size n—which has a different type for
each value of n.
However, if the values of the arguments to a function

which exhibits dynamic type behaviour are available at com-
pile time (called static values), then it maybe possible to trans-
form (or reduce) the function application to an expression
where the dynamic behaviour has been removed. For ex-
ample, consider the application list_to_tuple([1,2,3]).
It is evident that it can be reduced to {1,2,3} at compile
time. The reduced expression does not exhibit any dynamic
type behaviour, and can be easily assigned a type in our type
system.

Partial evaluation reduces an expression by pre-computing
the static parts. The reduced expression is often simpler,
and the dynamic type behaviour may be removed—hence
creating an opportunity for type inference.

Unlike the previous example, partial evaluation is not lim-
ited to static values alone. It can also reduce expressions
by using the construction of a value. For example, the ex-
pression on the left in is reduced to the one on the right:

Original
T = {F(X),G(X)},

element(1,T).

After PE
T1 = F(X),

T2 = G(X), T1.

Although the value of T is not known in the original ex-
pression, its structure is known to be a 2-element tuple by
construction. This information is exploited by the partial
evaluator to reduce element(1,T) to T1 (the result of F(X)).
Notice that the dynamic behaviour has been removed in the
reduced expression. As a result, the type system correctly
assigns it the type:

struct_pe/2 :: ((A) → B, (A) → C,A) → B

There are also other advantages to partial evaluation be-
sides evaluation of function applications. In some cases, the
partial evaluator cannot evaluate an application, because all
the arguments may not be available statically. In this case, the
static arguments are reduced, and the others are left intact in
the function call. Even this behaviour helps the type checker

Typing the wild in Erlang Erlang ’18, September 29, 2018, St. Louis, MO, USA

in many cases. For example, if a call to is_function/2 is re-
duced to the expression is_function(F,3), where the value
of F is unknown, then the type checker unifies the inferred
type of F with the fresh type (A,B,C) → D, which enables it
to assert that Fmust be a function type with arity 3 and some
return type. As a result, the expression is_function(F,3)
is type checked successfully even though partial evaluation
does not reduce it further.

5 Results
We have implemented a prototype of this type system as a
parse transform in Erlang, which takes the abstract syntax
tree (AST) of a subject Erlang program as input and does
type checking as a side-effect. If type checking succeeds, the
parse transform writes a module interface file with the types
of top level functions and returns the AST (possibly modified
by partial evaluation), otherwise it throws a type error using
erlang:error/2—causing the compilation to crash. The link
to the implementation can be found in section A.1. In this
section, we show some preliminary results of running the
type checker on several hundreds of lines of code.

5.1 Evaluation
We evaluate our type checker by running it against many ex-
ample functions (some shown in earlier sections) and some
small Erlang libraries. The selection includes a couple of
OTP libraries, and a library which implements a fault tol-
erant distributed resource pool. The current version of the
type checker does not support typing of modules, and the
libraries have been chosen such that they contain only one
module. Note that, however, for the purposes of this evalua-
tion, remote function calls to certain built-in functions are
allowed because they have been pre-assigned a type in the
environment.
The following table shows the number of lines of code

(LOC) in the library, the number of lines modified (to make
the type checker accept it) and the total compilation time of
the module (which includes type checking, writing module
interface and compilation).

Library LOC LOC +/- Time
OTP/orddict 179 2 0.450s
OTP/ordsets 150 0 0.396s
ft_worker_pool 73 1 0.382s

The LOC modification is caused by adding an ADT defini-
tion and wrapping a value in the constructor of the ADT. For
example, the following definition had to be added to type
check the take/2 function in OTP/orddict:
-type maybe(A) :: error | {ok,A}.

Moreover, the type checker has also been applied to a 500
LOC test-suite which contains many corner cases for good
and bad programs (the test-suite can be found along with
the implementation by following the link in section A.1).

Our type checker catches errors that are easily missed
by Dialyzer. For example, the ill-typed function find/0 in
section 1 is accepted by Dialyer, but is rejected by our type
checker.

5.2 Error Messages
During our evaluation, we found that the error messages are
concise, fairly easy to comprehend and often contain enough
information to identify the issue. The most common errors
reported by the type system are of three kinds: 1) unification
errors, 2) class predicate solving errors, and 3) duc predicate
solving errors.
Unification errors report that the types which cannot be

unified and the lines they originate from. For example, the
errorCannot unify float() (line 1) with string() (line 2) specifies
that the type checker attempted to unify a float() on line
1 with a string() on line 2.

Class predicate errors report an attempt to solve an invalid
class predicate along with the line number. For example, the
error Invalid instance type string() (line 83) for class Num
specifies that a value of type string() has been treated as a
number on line 83.
Duc predicate errors are also fairly comprehensive and

hide much of the underlying constraint solving. For example,
when all branches of the proof tree in constraint solving lead
to a contradiction, the type checker reports the error: Unable
to find matching overloaded constructors on lines [7,8], which
specifies that neither of overloaded constructors on lines 7
and 8 match the expected type.

6 Limitations
Erlang allows the programmer to write functions which
operate on arbitrarily nested data structures. For example,
it allows the programmer to write the following function
(taken from the lists library):
flatlength ([H|T], L) when is_list(H) ->

flatlength(H, flatlength(T, L));

flatlength ([_|T], L) ->

flatlength(T, L + 1);

flatlength ([], L) -> L.

where the first argument to flatlength/2 can be an ar-
bitrarily nested list. This function, which looks perfectly
reasonable to an Erlang programmer, is rejected by the type
system, because it fails the occurs check. The problem here
is that the type of the first argument is infinitely recursive
(since the list may be arbitrarily nested), and the type system
is unable to assign it a finite type.

Many existing Erlang and OTP libraries have been written
using Dialyzer’s type system. This means that these pro-
grams rely heavily on the flexibilities of subtyping principles.
One example of this is the use of union types. A function,
for example, can return values of different types, provided a
union of all the returned types has been defined as a valid

Erlang ’18, September 29, 2018, St. Louis, MO, USA Nachiappan Valliappan and John Hughes

type. In our type system, however, this can be achieved only
by wrapping each returned value in constructors of the same
ADT. As a result, this would need modification of such func-
tions in order to pass our type checker.

The current type system does not type check concurrency.
The types assigned to messaging primitives are too simple
and this can easily lead to uncaught type errors. For example,
consider this function:
foo() ->

receive X -> X end.

This function type checks successfully and is assigned the
type () → A. Now consider the expression foo() + 1.0. It
is assigned the type f loat() by the type system since A is
unified with f loat(). But what happens if foo receives (and
hence returns) a boolean()? The execution of the expression
leads to runtime error!

7 Related Work
The earliest notable effort to type Erlang is the subtyping
system by Marlow and Wadler [8]. Their system types a sub-
set of Erlang by solving unification constraints of the form
U ⊆ V , which denotes that the type U is a subtype of type V.
In contrast, our type system solves unification constraints of
the formU = V . Although their work increased type aware-
ness among programmers, their system was not adopted as
type inference was slow and the inferred types were large
and complex.

Agda [1] is a dependently typed functional programming
language which allows the use of overloaded constructors.
A key difference, however, is that in Agda the user must
supply type information for all top level function definitions
and most sub-expressions. In such a type rich environment,
the type checker takes advantage of user provided types to
disambiguate between overloaded constructors. Our type
system, on the other hand, has no support for supplying type
signatures and is purely based on type inference. Moreover,
in Agda, if the type checker cannot disambiguate between
two constructors of the same type, it throws a type error.
Our type system defers this disambiguation (using type con-
straints) for later until more information is available, and
hence allows the constructors to be applicable for both types.

An alternative to partial evaluation to type functions such
as element/2, is_function/2 etc is to use dependent types.
This is because the type of the function depends on the value
of the arguments. However, type inference for dependent
types in general has been shown to be undecidable [3], and
we are forced to avoid this path to retain type inference in
our type system.

8 Future Work
Our work is far from complete. The type checker works for
single module Erlang programs, but lacks features which
make it practical for large scale Erlang applications. Support

for modules and exceptions in the type system is an impor-
tant requirement. Typing concurrency is also an interesting
goal for future work. Yet another avenue for future work is
better integration of partial evaluation and type inference.
Currently, partial evaluation is simply a pre-pass to type
inference, and information which arises at one stage cannot
be exploited in the other.

A Appendix
A.1 Source Code
The source code of the type checker prototype described in
this paper can be found at https://github.com/nachivpn/mt

A.2 Loss of Type Information in Duc Constraints
Consider the following ill-typed function (recall the defini-
tion of getReason/1 from section 3.5):
foo() ->

1.0 = getReason({'EXIT ',self(),true }).

Instead of rejecting foo(), the type checker assigns the type:
f oo/0 :: (A, f loat()) → B ∼ {(pid(), f loat()) → cl(f loat()),

(pid(), f loat()) → sr (f loat())}

B ∼ {cl(boolean()), sr (boolean())} ⇒ () → f loat

Applying Stålmarck’s method helps us catch this error.

References
[1] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of

Agda–a functional language with dependent types. In International
Conference on Theorem Proving in Higher Order Logics. Springer, 73–78.

[2] Luis Damas and Robin Milner. 1982. Principal type-schemes for func-
tional programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 207–212.

[3] Gilles Dowek. 1993. The undecidability of typability in the lambda-
pi-calculus. In International Conference on Typed Lambda Calculi and
Applications. Springer, 139–145.

[4] Mark P Jones. 1999. Typing haskell in haskell. In Haskell workshop,
Vol. 7.

[5] Neil D Jones, Carsten K Gomard, and Peter Sestoft. 1993. Partial
evaluation and automatic program generation. Peter Sestoft.

[6] Tobias Lindahl and Konstantinos Sagonas. 2005. Typer: a type annota-
tor of erlang code. In Proceedings of the 2005 ACM SIGPLAN workshop
on Erlang. ACM, 17–25.

[7] Tobias Lindahl and Konstantinos Sagonas. 2006. Practical type infer-
ence based on success typings. In Proceedings of the 8th ACM SIGPLAN
international conference on Principles and practice of declarative pro-
gramming. ACM, 167–178.

[8] Simon Marlow and Philip Wadler. 1997. A practical subtyping system
for Erlang. ACM SIGPLAN Notices 32, 8 (1997), 136–149.

[9] Robin Milner. 1978. A theory of type polymorphism in programming.
Journal of computer and system sciences 17, 3 (1978), 348–375.

[10] Didier Rémy. 2002. Using, understanding, and unraveling the OCaml
language from practice to theory and vice versa. In Applied Semantics.
Springer, 413–536.

[11] Mary Sheeran and Gunnar Stålmarck. 1998. A tutorial on Stålmarck’s
proof procedure for propositional logic. In International Conference on
Formal Methods in Computer-Aided Design. Springer, 82–99.

https://github.com/nachivpn/mt

	Abstract
	1 Introduction
	2 Erlang Type Inference, by Example
	2.1 Lists
	2.2 Numeric Types
	2.3 Algebraic Data Types
	2.4 Overloaded Data Constructors
	2.5 Messaging

	3 Implementing Typing Inference
	3.1 Overview of Hindley-Milner
	3.2 Beyond Hindley-Milner
	3.3 Type Classes
	3.4 ADTs
	3.5 Overloading Data Constructors
	3.6 Applying Dilemma Rule
	3.7 Records

	4 Partial Evaluation
	5 Results
	5.1 Evaluation
	5.2 Error Messages

	6 Limitations
	7 Related Work
	8 Future Work
	A Appendix
	A.1 Source Code
	A.2 Loss of Type Information in Duc Constraints

	References

