
Exponential Elimination for
Bicartesian Closed Categorical Combinators

Nachiappan Valliappan

Chalmers University

Sweden

nacval@chalmers.se

Alejandro Russo

Chalmers University

Sweden

russo@chalmers.se

ABSTRACT
Categorical combinators offer a simpler alternative to typed lambda

calculi for static analysis and implementation. Since categorical

combinators are accompanied by a rich set of conversion rules

which arise from categorical laws, they also offer a plethora of

opportunities for program optimization. It is unclear, however, how

such rules can be applied in a systematic manner to eliminate

intermediate values such as exponentials, the categorical equivalent
of higher-order functions, from a program built using combinators.

Exponential elimination simplifies static analysis and enables a

simple closure-free implementation of categorical combinators—

reasons for which it has been sought after.

In this paper, we prove exponential elimination for bicartesian
closed categorical (BCC) combinators using normalization. We

achieve this by showing that BCC terms can be normalized to

normal forms which obey a weak subformula property. We imple-

ment normalization using Normalization by Evaluation, and also

show that the generated normal forms are correct using logical

relations.

CCS CONCEPTS
• Software and its engineering → Functional languages; •
Theory of computation → Proof theory; Type theory.

KEYWORDS
normalization by evaluation, categorical combinators, defunction-

alization, subformula property

ACM Reference Format:
Nachiappan Valliappan and Alejandro Russo. 2019. Exponential Elimination

for Bicartesian Closed Categorical Combinators. In Principles and Practice of
Programming Languages 2019 (PPDP ’19), October 7–9, 2019, Porto, Portugal.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3354166.3354185

1 INTRODUCTION
Categorical combinators are combinators designed after arrows,

or morphisms, in category theory. Although originally introduced

to present the connection between lambda calculus and cartesian

closed categories (CCCs) [Curien 1986], categorical combinators

have attracted plenty of attention in formal analysis and implemen-

tation of various lambda calculi. For example, they are commonly

used to formulate an evaluation model based on abstract machines

PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Principles and
Practice of Programming Languages 2019 (PPDP ’19), October 7–9, 2019, Porto, Portugal,
https://doi.org/10.1145/3354166.3354185.

[Cousineau et al. 1987; Lafont 1988]. Abadi et al. [1991] observe

that categorical combinators “make it easy to derive machines for

the λ-calculus and to show the correctness of these machines”. This

ease is attributed to the absence of variables in combinators, which

avoids the difficulty with variable names, typing contexts, substi-

tution, etc. Recently, categorical combinators have also been used

in practical applications for programming smart contracts on the

blockchain [O’Connor 2017] and compiling functional programs

[Elliott 2017].

Since categorical combinators are based on categorical models,

they are accompanied by a rich set of conversion rules (between

combinator terms) which emerge from the equivalence between

morphisms in the model. These conversion rules form the basis

for various correct program transformations and optimizations.

For example, Elliott [2017] uses conversion rules from CCCs to

design various rewrite rules to optimize the compilation of Haskell

programs to CCC combinators. The availability of these rules raises

a natural question for optimizing terms in categorical combinator

languages: can intermediate values be eliminated by applying the

conversion rules whenever possible?

The ability to eliminate intermediate values in a categorical

combinator language has plenty of useful consequences, just as in

functional programming. For example, the elimination of exponen-
tials, the equivalent of high-order functions, from BCC combinators

solves problems created by exponentials in static analysis [Valli-

appan et al. 2018], and has also been sought after for interpreting

functional programs in categories without exponentials ([Elliott

2017], Section 10.2). It has been shown that normalization erases

higher-order functions from a program with first-order input and

output types in the simply typed lambda calculus (STLC) with

products and sums [Najd et al. 2016]—also known as defunctional-
ization [Reynolds 1998]. Similarly, can we erase exponentials and

other intermediate values by normalizing programs in the equally

expressive bicartesian closed categorical (BCC) combinators?

In this paper, we implement normalization for BCC combinators

towards eliminating intermediate values, and show that it yields

exponential elimination. We first recall the term language and con-

version rules for BCC combinators (Section 2), and provide a brief

overview of the normalization procedure (Section 3). Then, we

identify normal forms of BCC terms which obey a weak subformula
property and prove exponential elimination by showing that these

normal forms can be translated to an equivalent first-order combi-

nator language without exponentials (Section 4 and Section 5).

To assign a normal form to every term in the language, we imple-

ment a normalization procedure using Normalization by Evaluation
(NbE) [Berger et al. 1998; Berger and Schwichtenberg 1991] (Sec-

tion 6). We then prove, using Kripke logical relations [Mitchell and

https://doi.org/10.1145/3354166.3354185
https://doi.org/10.1145/3354166.3354185

PPDP ’19, October 7–9, 2019, Porto, Portugal Nachiappan Valliappan and Alejandro Russo

Moggi 1991], that normal forms of terms are consistent with the

conversion rules by showing that they are inter-convertible. (Sec-

tion 7). Furthermore, we show that exponential elimination can be

used to simplify static analysis—while retaining expressiveness—of

a combinator language called Simplicity (Section 8). Finally, we

conclude by discussing related work (Section 9) and final remarks

(Section 10).

Although we only discuss the elimination of exponentials in this

paper, the elimination of intermediate values of other types can

also be achieved likewise—except for products. The reason for this

becomes apparent when we discuss the weak subformula property

(in Section 5.1).

We implement normalization and mechanize the correctness

proof in the dependently-typed language Agda [Bove et al. 2009;

Norell 2007]. This paper is also written in literate Agda since de-

pendent types provide a uniform framework for discussing both

programs and proofs. We use category theoretic terminology to or-

ganize the implementation based on the categorical account of NbE

by Altenkirch et al. [1995]. However, all the definitions, algorithms,

and proofs here are written in vanilla Agda, and the reader may

view them as regular programming artifacts. Hence, we do not re-

quire that the reader be familiar with advanced categorical concepts.

We discuss the important parts of the implementation here, and

encourage the curious reader to see the complete implementation
1

for further details.

2 BCC COMBINATORS
A BCC combinator has an input and an output type, which can

be one of the following: 1 (for unit), 0 (for empty), ∗ (for product),

+ (for sum), ⇒ (for exponential) and base (for base types). The

Agda data type BCC (see Figure 1) defines the term language for

BCC combinators. In the definition, the type Ty denotes a BCC

type, and Set denotes a type definition in Agda (like ∗ in Haskell).

Note that the type variables a, b and c are implicitly quantified

and hidden here. The combinators are self-explanatory and behave

like their functional counterparts. Unlike functions, however, these

combinators do not have a notion of variables or typing contexts.

data BCC : Ty→ Ty→ Set where
id : BCC a a
• : BCC b c→ BCC a b→ BCC a c
unit : BCC a 1
init : BCC 0 a
exl : BCC (a ∗ b) a
exr : BCC (a ∗ b) b
pair : BCC a b → BCC a c → BCC a (b ∗ c)
inl : BCC a (a + b)
inr : BCC b (a + b)
match : BCC a c → BCC b c→ BCC (a + b) c
curry : BCC (c ∗ a) b → BCC c (a⇒ b)
apply : BCC (a⇒ b ∗ a) b

Figure 1: BCC Combinators

1
https://github.com/nachivpn/expelim

data _≈_ : BCC a b→ BCC a b → Set where
-- categorical rules

idr : f • id ≈ f
idl : id • f ≈ f
assoc : f • (g • h) ≈ f • (g • h)
-- elimination rules

exl-pair : (exl • pair f g) ≈ f
exr-pair : (exr • pair f g) ≈ g
match-inl : (match f g • inl) ≈ f
match-inr : (match f g • inr) ≈ g
apply-curry : apply • (curry f ⊗ id) ≈ f
-- uniqueness rules

uniq-init : init ≈ f
uniq-unit : unit ≈ f
uniq-pair : exl • h ≈ f→ exr • h ≈ g→ pair f g ≈ h
uniq-curry : apply • h ⊗ id ≈ f→ curry f ≈ h
uniq-match : h • inl ≈ f→ h • inr ≈ g→ match f g ≈ h
-- equivalence and congruence rules

refl : f ≈ f
sym : f ≈ g → g ≈ f
trans : f ≈ g → g ≈ h→ f ≈ h
congl : x ≈ y→ f • x ≈ f • y
congr : x ≈ y→ x • f ≈ y • f

Figure 2: Conversion rules for BCC

The BCC combinators are accompanied by a number of conver-

sion rules which emerge from the equational theory of bicartesian

closed categories [Awodey 2010]. These rules can be formalized as

an equivalence relation _≈_ : BCC a b→ BCC a b→ Set (see Fig-
ure 2). In the spirit of categorical laws, the type-specific conversion

rules can be broadly classified as elimination and uniqueness (or uni-
versality) rules. The elimination rules state when the composition of

two terms can be eliminated, and uniqueness rules state the unique

structure of a term for a certain type. For example, the conversion

rules for products include two elimination rules (exl-pair, exr-pair)
and a uniqueness rule (uniq-pair):

Note that the operator ⊗ used in the exponential elimination rule

(apply-curry) is defined below. It pairs two BCC terms using pair
and applies them on each component of a product. The components

are projected using exl and exr respectively.

⊗ : BCC a b → BCC c d → BCC (a ∗ c) (b ∗ d)
f ⊗ g = pair (f • exl) (g • exr)

The standard βη conversion rules of STLC [Altenkirch et al. 2001;

Balat et al. 2004] can be derived from the conversion rules specified

here. This suggests that we can perform β and η conversion for

BCC terms, and normalize them as in STLC. Let us look at a few

simple examples.

Example 1. For a term f : BCC a (b ∗ c), pair (exl • f) (exr • f)
can be converted to f as follows.

eta∗ : pair (exl • f) (exr • f) ≈ f
eta∗ = uniq-pair refl refl

https://github.com/nachivpn/expelim

Exponential Elimination for BCC combinators PPDP ’19, October 7–9, 2019, Porto, Portugal

The constructor refl states that the relation ≈ is reflexive. The

conversion above corresponds to η conversion for products in STLC.
Example 2. Suppose that we define a combinator uncurry as

follows.

uncurry : BCC a (b ⇒ c)→ BCC (a ∗ b) c
uncurry f = apply • f ⊗ id

Given this definition, a term curry (uncurry f) can be converted to

f , by unfolding the definition of uncurry—as curry (apply • f ⊗ id)—
and then using uniq-curry refl.

eta⇒ : curry (uncurry f) ≈ f
eta⇒ = uniq-curry refl

Note that Agda unfolds the definition of uncurry automatically for

us. The conversion above corresponds to η conversion for functions

in STLC.

Example 3. Given a term t : BCCa (b ∗ c) such that t ≈ (pair f д) •
h : BCC a (b ∗ c), t can be converted to the term pair (f • h) (д • h)
using equational reasoning such as the following.

t

≈ (pair f д) • h By definition

≈ pair (exl • pair f д • h) (exr • pair f д • h) By example 1

≈ pair (f • h) (exr • pair f д •h) By exl-pair

≈ pair (f • h) (д • h) By exr-pair

Example 4. Given f : BCC a (b ⇒ c) and д : BCC a b, if f can be

converted to curry f ′, then the term (apply • pair f д) : BCC a c
can be converted to f ′ • pair id д (the implementation is left as

an exercise for the reader). Notice that the combinators curry and

apply are eliminated in the result of the conversion. This conversion

corresponds to β conversion for functions in STLC, and forms the

basis for exponential elimination.

3 OVERVIEW OF NORMALIZATION
Our goal is to implement a normalization algorithm for BCC terms

and show that normalization eliminates exponentials. We will

achieve the latter using a syntactic property of normal forms called

the weak subformula property. To make this property explicit, we

define normal forms as a separate data type Nf as follows.

data Nf : Ty→ Ty→ Set where

Normal forms are not themselves BCC terms, but they can be em-

bedded into BCC terms using a quotation function q which has the

following type.

q : Nf a b → BCC a b

To prove that normalization eliminates exponentials, we show

that normal forms with first-order types can be quoted into a first-

order combinator language, called DBC, as follows.

qD : firstOrd a→ firstOrd b → Nf a b → DBC a b

The data type DBC is defined syntactically identical to BCC with-

out the exponential combinators curry and apply, and with an

additional distributivity combinator distr (see Section 5).

Normalization based on rewriting techniques performs syntactic

transformations of a term to produce a normal form. NbE, on the

other hand, normalizes a term by evaluating it in a suitable seman-

tic model, and extracting a normal form from the resulting value.

Evaluation is implemented as an interpreter function eval, and ex-

traction of normal forms—also called reification—is implemented as

a function reify (see Section 6). These functions have the following

types.

eval : BCC a b → (⟦ a ⟧↠ ⟦ b ⟧)
reify : (⟦ a ⟧ ↠ ⟦ b ⟧)→ Nf a b

The type ⟦ a ⟧ is an interpretation of a BCC type a in the model,

and similarly for b. The type ⟦ a ⟧ ↠ ⟦ b ⟧, on the other hand, is a

function between interpretations (to be defined later) and denotes

the interpretation of a BCC term of type BCC a b.
Normalization is achieved by evaluating a term and then reifiying

it, and is thus implemented as a function norm defined as follows.

norm : BCC a b → Nf a b
norm t = reify (eval t)

To ensure that the normal form generated for a term is correct,

we must ensure that it is convertible to the original term. This

correctness theorem is stated by quoting the normal form as follows.

correct-nf : (t : BCC a b)→ t ≈ q (norm t)

We prove this theorem using logical relations between BCC terms

and values in the semantic model (see Section 7).

4 SELECTIONS
The evaluation of a term requires an input of the appropriate type.

During normalization, since we do not have the input, we must as-

sign a reference to the unknown input value and use this reference

to represent the value. In lambda calculus, these references are sim-

ply variables. Since BCC combinators lack the notion of variables,

we must identify the subset of BCC terms which (intuitively) play

the counterpart role—which is the goal of this section.

If we think of the typing context as the “input type” of a lambda

term, then variables are essentially indices which project an un-

known value from the input (a substitution). This is because typing

contexts enforce a product-like structure on the input. For example,

the variable x in the body of lambda term Γ, x : a ⊢ x : a projects

a value of type a from the context Γ, x : a. The BCC equivalent

of Γ, x : a ⊢ x : a is the term exl : (Γ ∗ a) a. Unlike lambda terms,

however, BCC terms do not enforce a specific type structure on the

input, and may also return the input entirely as id : (Γ ∗ a) (Γ ∗ a).
Hence, as opposed to projections, we need a notion of selections.

Specific BCC terms can be used to select an unknown value from

the input, and these terms can be defined explicitly by the data type

Sel (see Figure 3). A term of type Sel a b denotes a selection of b
from the input a. When the input is a product, the constructor drop
drops the second component, and applies a given selection to the

first component. The constructor keep, on the other hand, keeps

the second component unaltered and applies a selection to the first

component. We cannot select further from the input if it is not a

product, and hence the remaining constructors, with the prefix end,
state that we must simply return the input as is—thereafter referred

to as end- constructors.

PPDP ’19, October 7–9, 2019, Porto, Portugal Nachiappan Valliappan and Alejandro Russo

data Sel : Ty→ Ty→ Set where
endu : Sel 1 1
endi : Sel 0 0
endb : Sel base base
ends : Sel (a + b) (a + b)
ende : Sel (a⇒ b) (a⇒ b)
drop : Sel a b → Sel (a ∗ c) b
keep : Sel a b → Sel (a ∗ c) (b ∗ c)

Figure 3: Selections

Note that the four end- constructors enable the definition of

a unique identity selection
2
, iden : Sel a a. This selection can be

defined by induction on the type a, where the only interesting case

of products is defined as below. The remaining cases can be defined

using the appropriate end- constructor.

iden : {a : Ty}→ Sel a a
iden {a1 ∗ a2} = keep iden
-- end- for remaining cases

Figure 4 illustrates the use of selections by examples.

drop iden : Sel ((a + b) ∗ c) (a + b)
keep (drop iden) : Sel (a ∗ b ∗ c) (a ∗ c)

drop (keep (drop iden)) : Sel (a ∗ b ∗ c ∗ d) (a ∗ c)

Figure 4: Examples of selections

Selections form the basis for the semantic interpretation of BCC
terms, and hence enable the implementation of NbE. To this extent,

they have the following properties.

Property 4.1 (Category of selections). Selections define a cate-

gory where the objects are types and a morphism between two

types a and b is a selection of type Sel a b. The identity morphisms

are defined by iden, and morphism composition can be defined

by straight-forward induction on the morphisms as a function of

type _◦_ : Sel b c → Sel a b → Sel a c. The identity and associativ-

ity laws of a category (sel-idl, sel-idr and sel-assoc below) can be

proved using Agda’s built-in syntactic equality ≡ by induction on

the morphisms. These laws have have the following types in Agda.

sel-idl : iden ◦ s ≡ s
sel-idr : s ◦ iden ≡ s
sel-assoc : (s1 ◦ s2) ◦ s3 ≡ s1 ◦ (s2 ◦ s3)

Property 4.2 (Faithful embedding). Selections can be faithfully

embedded into BCC terms since they are simply a subset of BCC

terms. This embedding can be implemented by induction on the

selection, as follows.

embSel : Sel a b → BCC a b
embSel (drop e) = embSel e • exl

2
We prefer to derive the identity selection as opposed to adding it as a constructor,

to avoid ambiguity which could be created between selections iden and (keep iden),
both of the type Sel (a1 ∗ a2) (a1 ∗ a2). The derived identity avoids this ambiguity by

definition.

embSel (keep e) = pair (embSel e • exl) exr
-- id for remaining cases

5 NORMAL FORMS
In this section, we present normal forms for BCC terms, and prove

exponential elimination using them. It is important to note that

these normal forms are not normal forms of the conversion rules

specified by the relation ≈, but rather are a convenient syntactic

restriction over BCC terms for proving exponential elimination.

Precisely, they are normal forms of BCC terms which obey a weak

subformula property—defined later in this section. This characteri-

zation is based on normal forms of proofs in logic, as opposed to

normal forms of terms in lambda calculus.

Normal forms are defined mutually with neutral forms (see Fig-

ure 5). Roughly, neutral forms are eliminators applied to selections,

and they represent terms which are blocked during normalization

due to unavailability of the input. The neutral form constructor sel
embeds a selection as a base case of neutrals; while fst, snd and

app represent the composition of the eliminators exl, exr and apply
(respectively) to neutrals.

The normal form constructors unit, pair and curry represent

their BCC term counterparts; ne-0 and ne-b embed neutrals which

return values of type 0 and base (respectively) into normal forms;

left and right represent the composition of the injections inl and inr
respectively; and case represents the BCC term Case below, which
is an eliminator of sums defined using distributivity of products

over sums. Note that the BCC term Distr implements this distribu-

tivity requirement, and can be derived using exponentials—see

Appendix A.2.

-- Distr : BCC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))

Case : BCC a (b + c) → BCC (a ∗ b) d→ BCC (a ∗ c) d → BCC a d
Case x f g = match f g • Distr • pair id x

The quotation functions are implemented as a simple syntax-

directed translation by mapping neutrals and normal forms to their

BCC counterparts as discussed above. For example, the quotation

of the neutral form fst x—where x has the type Ne a (b ∗ c)—is
simply exl : (b ∗ c) b composed with the quotation of x . Similarly,

the quotation of left x is inl composed with the quotation of its

argument x . We use the derived term Case to quote the normal

form case.
Note that the normal forms resemble βη long forms of STLCwith

products and sums [Abel and Sattler 2019], but differ with respect

to the absence of typing contexts and variables. In place of variables,

we use selections in neutral forms—this is an important difference

since it allows us to implement reflection, a key component of

reification (discussed later in Section 6).

In the rest of this section, we will define the weak subformula

property, show that all normal forms obey it, and prove exponential

elimination as a corollary.

5.1 Weak Subformula Property
To understand the need for a subformula property, let us suppose

that we are given a term t : BCC (1 ∗ 1) 1. Does t use exponentials?
Unfortunately, we cannot say much about the presence of curry
and apply in the subterms without inspecting the body of the term

Exponential Elimination for BCC combinators PPDP ’19, October 7–9, 2019, Porto, Portugal

data Nf (a : Ty) : Ty→ Set where
unit : Nf a 1
ne-0 : Ne a 0→ Nf a b
ne-b : Ne a base → Nf a base
left : Nf a b → Nf a (b + c)
right : Nf a c → Nf a (b + c)
pair : Nf a b → Nf a c → Nf a (b ∗ c)
curry : Nf (a ∗ b) c → Nf a (b⇒ c)
case : Ne a (b + c) → Nf (a ∗ b) d→ Nf (a ∗ c) d → Nf a d

data Ne (a : Ty) : Ty → Set where
sel : Sel a b → Ne a b
fst : Ne a (b ∗ c)→ Ne a b
snd : Ne a (b ∗ c)→ Ne a c
app : Ne a (b⇒ c) → Nf a b → Ne a c

q : Nf a b → BCC a b
q unit = unit
q (ne-b x) = qNe x
q (ne-0 x) = init • qNe x
q (left n) = inl • q n
q (right n) = inr • q n
q (pair m n) = pair (q m) (q n)
q (curry n) = curry (q n)
q (case x m n) = Case (qNe x) (q m) (q n)

qNe : Ne a b → BCC a b
qNe (sel x) = embSel x
qNe (fst x) = exl • qNe x
qNe (snd x) = exr • qNe x
qNe (app x n) = apply • pair (qNe x) (q n)

Figure 5: Normal forms and quotation

itself. Term t could be something as simple as exl or it could be:

apply • (pair (curry unit • exl) exr) : BCC (1 ∗ 1) 1

But with an appropriate subformula property, however, this be-

comes an easy task. Let us suppose that t : BCC (1 ∗ 1) 1 has a

property that the input and output types of all its subterms occur

in t ’s input (1 ∗ 1) and/or output (1) type. In this case, what can we

say about the presence of curry and/or apply in t? Well, it would

not contain any! The input and output types of all the subterms

would be 1 and/or products of it, and hence it is impossible to find a

curry or an apply in a subterm. Let us define this property precisely

and show that normal forms obey it by construction.

The occurrence of a type in another is defined as follows.

Definition 5.1 (Weak subformula). A type b is a weak subformula

of a if b ◁ a, where ◁ is defined as follows.

data _◁_ : Ty→ Ty→ Set where
self : a ◁ a
subl : a ◁ b → a ◁ (b ⊗ c)

subr : a ◁ c → a ◁ (b ⊗ c)
subp : a ◁ c → b ◁ d→ (a ∗ b) ◁ (c ∗ d)

For a binary type operator ⊗ which ranges over ∗, + or ⇒, this

definition states that:

• a is a weak subformula of a (self)
• a is a weak subformula of b ⊗ c if a is a weak subformula

of b (subl) or a is a weak subformula of c (subr)
• a ∗ b is a weak subformula of c ∗ d if a is a weak subformula

of c and b is a weak subformula of d (subp).
The constructors self, subl and subr define precisely the concept

of a subformula in proof theory [Troelstra and Schwichtenberg

2000]. For BCC terms, however, we also need subp which weakens

the subformula definition by relaxing it up to products. To under-

stand this requirement, we must first define the following property

for normal forms.

Definition 5.2 (Weak subformula property). A normal form of

type Nf a b obeys the weak subformula property if, for all its sub-

terms of type Nf i o, we have that i ◁ a ∗ b and o ◁ a ∗ b.

Do all normal forms obey this property? It is easy to see that

the normal forms constructed using unit, left, right and pair obey
the weak subformula property given their subterms do the same.

For instance, the constructor left returns a normal form of type

Nf a (b + c), where the input type (a) and output type (b) of its
subterm Nf a b occur in a and (b + c). Hence, if a subterm t : Nf a b
obeys the weak subformula property, then so does left t .

To understand why curry satisfies the weak subformula prop-

erty, recall its definition as a normal form constructor of type

BCC (c ∗ a) b → BCC c (a⇒ b). The input type c ∗ a of its subterm
argument is evidently not a subformula—as usually defined in proof

theory—of the types c or a ⇒ b. However, by subp, we have that
the type c ∗ a is a weak subformula of the product of the input and
output types c ∗ (a ⇒ b). This is precisely the need for weakening

the definition of a subformula with subp3. Specifically, the proof of
(c ∗ a) ◁ c ∗ (a ⇒ b) is given by subp (self) (subl self).

On the other hand, the definition of the constructor case looks a
bit suspicious since it allows the types b and c which do not occur

in final type Nf a d . To understand why case also satisfies the weak
subformula property, we must establish the following property

about neutral forms, which we shall call neutrality.

Property 5.1. Given a neutral form Ne a b, we have that b is a

weak subformula of a, i.e., neutrality : Ne a b → b ◁ a.

Proof. By induction on neutral forms. For the base case sel,
we need a lemma about neutrality of selections, which can be

implemented by an auxiliary function neutrality-sel : Sel a b →

b ◁ a by induction on the selection. For the other cases, we simply

apply the induction hypothesis on the neutral subterm. □

Due to neutrality of the neutral formNe a (b + c) in the definition

of case, we have that (b + c) ◁ a, and hence (b + c) ◁ (a ∗ d). As a
result, case also obeys theweak subformula property. Similarly, ne-0
and ne-b also obey the weak subformula property as a consequence

of neutrality. Thus, we have the following theorem.

3
In logic, however, the requirement for weakening a subformula by products is absent,

since an equivalent definition of curry as Γ, a ⊢ b → Γ ⊢ a ⇒ b uses context

extension (,) instead of products (∗)

PPDP ’19, October 7–9, 2019, Porto, Portugal Nachiappan Valliappan and Alejandro Russo

Theorem 5.1. All normal forms, as defined by the data type Nf,
satisfy the weak subformula property.

Proof. By induction on normal forms, as discussed above. □

Notice that, unlike normal forms, arbitrary BCC terms need

not satisfy the weak subformula property. The term apply • (pair
(curry unit • exl) exr) discussed above is already an example of

such a term. More specifically, its subterm apply has the input type

(1⇒ 1) ∗ 1, which does not occur in (1 ∗ 1) ∗ 1—i.e., (1⇒ 1) ∗ 1 ⋪
(1 ∗ 1) ∗ 1. However, all BCC terms, including the ones which do not

satisfy the weak subformula property, can be converted to terms

which satisfy this property. This conversion is precisely the job of

normalization. For instance, the previous example can be converted

to unit : BCC (1 ∗ 1) 1 using uniq-unit. A normalization algorithm

performs such conversions automatically whenever possible.

Since neutral forms offer the intuition of an “eliminator”, it might

be disconcerting to see case, an eliminator of sums, oddly defined

as a normal form. But suppose that it was defined in neutrals as

follows.

case? : Ne a (b + c) → Nf (a ∗ b) d → Nf (a ∗ c) d → Ne a d

Such a definition breaks neutrality (Property 5.1) since we cannot

prove that d ◁ a, and subsequently breaks the weak subformula

property of normal forms (Theorem 5.1). But what about the follow-

ing definition where the first argument to case is normal, instead

of neutral?

case? : Nf a (b + c) → Nf (a ∗ b) d → Nf (a ∗ c) d → Nf a d

Such a definition also breaks the weak subformula property—for

the exact same reason which caused our suspicion in the first place:

b and c do not occur in a, d or a ∗ d .

5.2 Syntactic Elimination of Exponentials
Exponential elimination can be proved as a simple corollary of the

weak subformula property of normal forms. If a andb are first-order
types, i.e., if the type constructor ⇒ does not occur in types a or

b, then we can be certain that the subterms of Nf a b do not use

curry (from Nf) or app (from Ne). This follows directly from the

weak subformula property (Theorem 5.1). To show this explicitly,

let us quote such normal forms to a first-order combinator language

based on distributive bicartesian categories (DBC) [Awodey 2010].

The DBC term language is defined by the data type DBC, which
includes all the BCC term constructors except Curry and Apply—
although most of them have been left out here for brevity. Addition-

ally, it also has a distributivity constructor distr which distributes

products over sums. The constructor distr is needed to implement

the BCC term Case, which is in turn needed to quote the normal

form case (as earlier). This is because distributivity can no longer

be derived in the absence of exponentials.

To restrict the input and output to first-order types, suppose that

we define a predicate on types, firstOrd : Ty → Set, which disal-

lows the occurrence of exponentials in a type. Given this predicate,

we can now define quotation functions qNeD and qD as below.

The implementation of the function qNeD is similar to that of the

function qNe (discussed earlier) for most cases, and similarly for

qD. The only interesting cases are that of the exponentials, and

these can be implemented as follows.

data DBC : Ty→ Ty→ Set where
id : DBC a a
• : DBC b c→ DBC a b→ DBC a c
-- exl, exr, pair, init

-- inl, inr, match, unit

distr : DBC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))

Figure 6: DBC combinators

qNeD : firstOrd a→ Ne a b → DBC a b
qNeD p (app n _) = ⊥-elim (expNeutrality p n)

qD : firstOrd a→ firstOrd b → Nf a b→ DBC a b
qD p q (curry n) = ⊥-elim q

For neutrals, we escape having to quote app because such a case

is impossible: We have a proof p : firstOrd a which states that input

type a does not contain any exponentials. However, the exponen-

tial return type of n, say b ⇒ c , must occur in a by neutrality of

n : Ne a (b ⇒ c)—which contradicts the proof p. Hence, such a

case is not possible. This reasoning is implemented by applying the

function⊥-elimwith a proof of impossibility produced using an aux-

iliary function expNeutrality : firstOrd a → Ne a b → firstOrd b.
Similarly, we escape the quotation of the normal form curry since

Agda automatically inferred that such a case is impossible. This is

because a proof q which states that the output b is not an exponen-

tial, is contradicted by the definition of curry which states that it

must be—hence q must be impossible.

Although we have shown the syntactic elimination of exponen-

tials using normal forms, we are yet to show that there exists an

equivalent normal form for every term. For this, wemust implement

normalization and prove its correctness.

6 NORMALIZATION FOR BCC
To implement evaluation and reification, we must first define an

appropriate interpretation for types and terms. A naive Set-based
interpretation (such as ⟦_⟧n below) which maps BCC types to their

Agda counterparts fails quickly.

⟦ 1 ⟧n = ⊤

⟦ 0 ⟧n = ⊥

⟦ base ⟧n = ??
⟦ t1 ∗ t2 ⟧n = ⟦ t1 ⟧n × ⟦ t2 ⟧n
⟦ t1 + t2 ⟧n = ⟦ t1 ⟧n ⊎ ⟦ t2 ⟧n
⟦ t1 ⇒ t2 ⟧n = ⟦ t1 ⟧n → ⟦ t2 ⟧n
What should be the correct interpretation of the type base? The
naive interpretation also makes it impossible to implement reflec-

tion for the empty and sum types, since their inhabitants cannot be

faithfully represented in such an interpretation (see Section 6.3). To

address this problem, we must first define an appropriate semantic

model.

6.1 Interpretation in Presheaves
To implement NbE, our choice of semantic model for interpretation

of BCC types must allow us to implement both evaluation and

reification. NbE for STLC can be implemented by interpreting it in

Exponential Elimination for BCC combinators PPDP ’19, October 7–9, 2019, Porto, Portugal

presheaves over the category of weakenings [Altenkirch et al. 1995]

[Abel and Sattler 2019]. The semantic equivalence of BCC combina-

tors and STLC suggests that it should be possible to interpret BCC

terms in presheaves as well. The difference, however, is that we will

interpret BCC in presheaves over the category of selections (instead

of weakenings). Such a presheaf, for our purposes, is simply the

following record definition:

record Pre : Set1 where
field
In : Ty → Set
lift : {i j : Ty}→ Sel j i→ (In i→ In j)

Intuitively, an occurrence In i can be understood as a Set interpreta-
tion indexed by an input type i . The function lift can be understood

as a utility function which converts a semantic value for the input

i to a value for a “larger” input j, for a given selection of i from j.
For the category theory-aware reader, notice that Pre matches

the expected definition of a presheaf as a functor which maps ob-

jects (using In) and morphisms (using lift) in the opposite category

of the category of selections to the Set-category. We skip the func-

tor laws of the presheaf in the Pre record to avoid cluttering the

normalization procedure, and instead prove them separately as

needed for the correctness proofs later.

With the definition of a presheaf, we can now implement the

desired interpretation of types as ⟦_⟧ : Ty → Pre. Intuitively, a
presheaf model allows us to interpret a BCC type as an Agda type

for a given input type—or equivalently for a given typing context.

To implement the function ⟦_⟧, we will need various presheaf

constructions (instances of Pre)—defining these is the goal of this
section. Note that all names ending with ’ denote a presheaf.

1’ : Pre
1’ .In _ = ⊤

1’ .lift _ _ = tt

0’ : Pre
0’ .In _ = ⊥

0’ .lift _ ()

Figure 7: Unit and Empty presheaves

The unit presheaf maps all input types to the type ⊤ (unit type

in Agda) and empty presheaf maps it to ⊥ (empty type in Agda)

(see Figure 7). The implementation of lift is trivial in both cases

since the only inhabitant of ⊤ is tt, and ⊥ has no inhabitants.

The product of two presheaves A and B is defined component-

wise as follows.

∗’ : Pre→ Pre→ Pre
(A ∗’ B) .In i = A .In i × B .In i
(A ∗’ B) .lift s (x , y) = (A .lift s x , B .lift s y)

The function lift is implemented component-wise since s has the
type Sel j i , x has the type A .In i , y has the type B .In i , and the

result must be a value of type A .In j × B .In j. Similarly, the sum

of two presheaves is also defined component-wise as follows.

+’ : Pre→ Pre → Pre
(A +’ B) .In i = A .In i ⊎ B .In i
(A +’ B) .lift s (inj1 x) = inj1 (A .lift s x)
(A +’ B) .lift s (inj2 x) = inj2 (B .lift s x)

It is tempting to implement an exponential presheaf _⇒’_ com-

ponent wise (like _x’_), but this fails at the implementation of

lift: given Sel j i , we can not lift a function (A .In i → B .In i) to
(A .In j → B .In j) directly. To solve this, we must implement a

slightly more general version which allows for lifting as follows.

⇒’ : Pre → Pre → Pre
(A⇒’ B) .In i = {i1 : Ty}→ Sel i1 i→ A .In i1 → B .In i1
(A⇒’ B) .lift s f s’ = f (s ◦ s’)

Recall that the operator ◦ implements composition of selections.

The interpretation of the exponential presheaf is defined for a given

input type i , as a function (space) for all selections of the type i1
from i [MacLane and Moerdijk 1992]—which gives us the required

lifting by composition of the selections.

BCC terms also define presheaves when indexed by the output

type.

BCC’ : Ty → Pre
BCC’ o .In i = BCC i o
BCC’ o .lift s t = liftBCC s t

To implement liftBCC, recollect that selections can be embedded

into BCC terms using the embSel function (from Section 4). Hence,

lifting BCC terms can be implemented easily using composition, as

follows.

liftBCC : Sel j i→ BCC i a→ BCC j a
liftBCC s t = t • embSel s

Similarly, normal forms and neutral forms also define presheaves

when indexed by the output type (see Figure 8). The implementation

of lift for normal forms (litfNf) can be defined by straight-forward

induction on the normal form—and similarly for liftNe.

Nf’ : Ty→ Pre
Nf’ o .In i = Nf i o
Nf’ o .lift s n = liftNf s n

Ne’ : Ty → Pre
Ne’ o .In i = Ne i o
Ne’ o .lift s n = liftNe s n

Figure 8: Normal and Neutral form presheaves

For notational convenience, let us define a type alias Sem for

values in the interpretation:

Sem : Ty → Pre → Set
Sem x P = P .In x

For example, a value of type Sem a ⟦ b ⟧ denotes a “semantic value”

in the interpretation ⟦ b ⟧ indexed by the input type a. When the

input is irrelevant, we simply skip mentioning it and say “value in

the interpretation”.

A BCC term is interpreted as a natural transformation between

presheaves, which is defined as follows.

↠ : Pre → Pre → Set
A↠ B = {i : Ty}→ Sem i A → Sem i B

Intuitively, this function maps semantic values in A to semantic

values in B (for the same input type i).

PPDP ’19, October 7–9, 2019, Porto, Portugal Nachiappan Valliappan and Alejandro Russo

6.2 NbE for CCC Fragment
NbE for the fragment of BCC which excludes the empty and sum

types, namely the CCC fragment, is rather simple—let us implement

this first in this section. The presheaves defined in the previous

section allow us to address the issue from earlier for interpreting

the type base. The interpretation for types in the CCC fragment is

defined as follows.

⟦_⟧ : Ty → Pre
⟦ 1 ⟧ = 1’
⟦ base ⟧ = Nf’ base
⟦ a ∗ b ⟧ = ⟦ a ⟧ ∗’ ⟦ b ⟧
⟦ a⇒ b ⟧ = ⟦ a ⟧⇒’ ⟦ b ⟧
The unit, product and exponential types are simply interpreted as

their presheaf counterparts. The base type, on the other hand, is

interpreted as the presheaf of normal forms indexed by base. This
is because the definition of BCC has no combinators specifically

for base types, which means that a term BCC i base must depend

on its input for producing a base value. Hence, we interpret it as a
family of normal forms which return base for any input i—which
is precisely the definition of the Nf’ base presheaf. Note that this
interpretation of base types is fairly standard [Lindley 2005].

Having defined the interpretation of types, we can now define

the interpretation of BCC terms, i.e., evaluation, as follows.

eval : BCC a b → (⟦ a ⟧↠ ⟦ b ⟧)
eval id x = x
eval (f • g) x = eval f (eval g x)
eval unit x = tt
eval exl (x1 , _) = x1
eval exr (_ , x2) = x2
eval (pair t1 t2) x = eval t1 x , eval t2 x
eval apply (f , x) = f iden x
eval {a} (curry t) x = ń s y→ eval t (lift ⟦ a ⟧ s x , y)

The function eval interprets the term id as the the identity func-

tion, term composition • as function composition, exl as the first
projection, and so on for the other simple cases. Let us take a closer

look at the exponential fragment.

To interpret apply for a given function f (of type Sem i ⟦a1 ⇒ a2⟧)
and its argument x (of type Sem i ⟦ a1 ⟧), we must return a value for

its application (of type Sem i ⟦ a2 ⟧). Recollect from the definition

of the exponential presheaf that an exponential is interpreted as a

generalized function for a given selection. In this case, we do not

need this generality since the function and its argument are both

semantic values for the same input type i . Hence, we simply use

the identity selection iden : Sel i i , to obtain a suitable function

which accepts the argument y .

The interpretation of a term curry t (of type BCC a (b1 ⇒ b2))
for a given x (of type Sem i ⟦ a ⟧) must be a function (of type

Sem i1 ⟦ b1 ⇒ b2 ⟧) for a given selection s (of type Sel i1 i). We

achieve this by recursively evaluating t (of type BCC (a ∗ b1) b2),
with a pair of arguments (of type Sem i1 ⟦ a ⟧ and Sem i1 ⟦ b1 ⟧).
For the first component, we could use x , but since it is a semantic

value for the input i instead of i1, we must first lift it to i1 using the
selection s—which explains the occurrence of lift.

To implement the reification function reify : (⟦ a ⟧↠ ⟦ b ⟧) →
Nf a b, we need two natural transformations: reflect : Ne’ a↠ ⟦ a ⟧
and reifyVal : ⟦ b ⟧ ↠ Nf’ b. The former converts a neutral to a

semantic value, and the latter extracts a normal form from the

semantic value. Using these functions, we can implement reification

as follows.

reify : (⟦ a ⟧ ↠ ⟦ b ⟧)→ Nf a b
reify {a} f = let y = reflect {a} (sel iden)

in reifyVal (f y)

The main idea here is the use of reflection to produce a value of type

Sem a a. This value enables us to apply the function f to produce a

result of type Sem a ⟦ b ⟧. The resulting value is then used to apply

reifyVal and return a normal form of type Nf a b.
The natural transformations used in reification are implemented

as follows.

reflect : {a : Ty}→ Ne’ a ↠ ⟦ a ⟧
reflect {1} x = tt
reflect {base} x = ne-b x
reflect {a1 ∗ a2} x = reflect {a1} (fst x) , reflect {a2} (snd x)
reflect {a1 ⇒ a2} x = ń s y→

reflect {a2} (app (liftNe s x) (reifyVal y))

reifyVal : {b : Ty}→ ⟦ b ⟧↠ Nf’ b
reifyVal {1} x = unit
reifyVal {base} x = x
reifyVal {b1 ∗ b2} x = pair (reifyVal (proj1 x)) (reifyVal (proj2 x))
reifyVal {b1 ⇒ b2} x =
curry (reifyVal (x (drop iden) (reflect {b1} (snd (sel iden)))))

Reflection is implemented by performing a type-directed transla-

tion of neutral forms to semantic values. For example, in the product

case, a pair is constructed by recursively reflecting the components

of the neutral. For the exponential case, the reflection of a neutral

x must return a function which accepts a selection s , an argument

y, and returns a semantic value for the application of the neutral x
with the argumenty. In other words, the body of the function needs

to be constructed somehow by applying x (a neutral function) with

argument y (a semantic value). The neutral application constructor

app has two requirements: the function and the argument must

accept the same input, and the argument must be in normal form.

To satisfy the first requirement, we lift the neutral x using the selec-

tion s , and for the latter requirement we reify the argument value

y. Finally, we reflect the neutral application to produce the desired

semantic value.

The implementation of the function reifyVal is similar to reflec-

tion, but performs the dual action: producing a normal form from a

semantic value. Like reification, we implement this by type-directed

translation of semantic values to normal forms. Notice that the case

of base type is trivial for both functions. This is because we defined

the interpretation of base types as normal forms (Nf’ base), and
a semantic value is already in normal form. Hence, reifyVal sim-

ply returns the semantic value, and reflection applies ne-b on the

neutral to construct a normal form.

Exponential Elimination for BCC combinators PPDP ’19, October 7–9, 2019, Porto, Portugal

6.3 NbE for Sums and Empty Type
Let us suppose that we interpret 0 as ⟦ 0 ⟧ = 0’. Now consider

extending the implementation of reflection for the following case:

reflect {0} y = ??

How should we handle this case? The types tell us that we need to

construct a semantic value of the type ⊥ (recollect the definition of

0’). Since ⊥ is an empty type, this is an impossible task! A similar

problem arises for sums when we interpret them as ⟦ a + b ⟧ = ⟦ a
⟧ +’ ⟦ b ⟧. Reflection requires us to make a choice over a returning

a semantic value of ⟦ a1 ⟧ or ⟦ a2 ⟧. Which is the right choice? Un-

fortunately, we cannot make a decision with the given information

since it could be either of the cases.

We cannot construct the impossible or decide over the compo-

nent of a sum to reflect, hence we will simply build up a tree of

decisions that we do not wish to make. A decision tree is defined

inductively by the following data type:

data Tree (i : Ty) (P : Pre) : Set where
leaf : Sem i P→ Tree i P
dead : Ne i 0→ Tree i P
branch : Ne i (a + b) → Tree (i ∗ a) P → Tree (i ∗ b) P → Tree i P

A leaf in a decision tree can be leaf, in which case it contains a

semantic value in P . Alternatively, a leaf can also be dead, in which

case it contains a neutral which returns 0. A branch of the tree is

constructed by branch, and represents the choice over a neutral

form which returns a coproduct.

Intuitively, a tree represents a suspended computation for a

value in the interpretation P . For example, Tree i 0’ represents a
suspended computation for a value in Sem i 0’—which is ⊥. Since

values of this type are impossible, all the leaves of such a tree must

be dead. Similarly, a tree Tree i ⟦ a + b ⟧ represents a suspended

computation for a value of type Sem i ⟦ a + b ⟧—which is a sum of

Sem i ⟦ a ⟧ and Sem i ⟦ b ⟧.
Trees define a monad Tree’ on presheaves as follows.

Tree’ : Pre → Pre
(Tree’ A) .In i = Tree i A
(Tree’ a) .lift = liftTree

The function liftTree is defined by induction on the tree. The stan-

dard monadic operations return, map and join are defined by the

following natural transformations:

return : P↠ Tree’ P
join : Tree’ (Tree’ P) ↠ Tree’ P
map : (P ↠ Q) → Tree’ P ↠ Tree’ Q

The natural transformation return is defined as leaf, while join and

map can be defined by straight-forward induction on the tree. The

monadic structure of trees are precisely the reason they allow us to

represent suspended computation.

With the tree monad, we can now complete the interpretation

of types 0 and + as follows.

⟦ 0 ⟧ = Tree’ 0’
⟦ a + b ⟧ = Tree’ (⟦ a ⟧ +’ ⟦ b ⟧)

By interpreting the empty and sum types in the Tree’ monad, we

are able to handle the problematic cases of reflection by returning

a value in the monad, as follows.

reflect {0} x = dead x
reflect {a + b} x = branch x

(leaf (inj1 (reflect {a} (snd (sel iden)))))
(leaf (inj2 (reflect {b} (snd (sel iden)))))

In addition to general monadic operations, the monad Tree’ also
supports the following special “run” operations:

runTree : Tree’ ⟦ a ⟧ ↠ ⟦ a ⟧
runTreeNf : Tree’ (Nf’ a)↠ Nf’ a

These natural transformations allow us to run a monadic value to

produce a regular semantic value, and are required to implement

eval and reifyVal. The implementation of these natural transforma-

tions is mostly mechanical: runTreeNf can be defined by induction

on the tree, and runTree can be defined by induction on the type a
using an “applicative functor” map Tree c ⟦ a⇒ b ⟧→ Tree c ⟦ a ⟧
→ Tree c ⟦ b ⟧ for the exponential case.

The remaining cases of evaluation are implemented as follows.

eval inl x = return (inj1 x)
eval inr x = return (inj2 x)
eval {0} {b} init x = runTree {b} (map cast x)
eval {a + b} {c} (match f g) x = runTree {c} (map match’ x)
where
match’ : (⟦ a ⟧ +’ ⟦ b ⟧) ↠ ⟦ c ⟧
match’ (inj1 y) = eval f y
match’ (inj2 y) = eval g y

For the case of inl, we have a semantic value x in the interpretation

⟦ a ⟧, and we need a monadic value Tree’ (⟦ a ⟧ +’ ⟦ b ⟧). To achieve
this, we simply return the value in the monad by applying the

injection inj1. The case of inr is very similar.

For the case of init, we have a value x in the interpretation

Tree’ 0’, and we need a value in ⟦ b ⟧. Since x is a tree, we can map

over it using a function cast : 0’↠ ⟦ b ⟧ to get a value in Tree’ ⟦ b ⟧.
The resulting tree can then be run using runTree to return the

desired result in ⟦b ⟧. The function cast has a trivial implementation

with an empty body since a value in the interpretation by 0’ has
type ⊥. The implementation of match is also similar, and we use a

natural transformation match’ instead of cast to map over x .
The implementation of reification for the remaining fragment

resembles evaluation:

reifyVal {0} x = runTreeNf (map cast x)
reifyVal {a + b} x = runTreeNf (map matchNf x)
where
matchNf : (⟦ a ⟧ +’ ⟦ b ⟧)↠ Nf’ (a + b)
matchNf (inj1 y) = left (reifyVal y)
matchNf (inj2 y) = right (reifyVal y)

We use the natural transformation runTreeNf instead of runTree
and matchNf instead of match.

PPDP ’19, October 7–9, 2019, Porto, Portugal Nachiappan Valliappan and Alejandro Russo

7 CORRECTNESS OF NORMAL FORMS
A normal form is correct if it is convertible to the original term

when quoted. The construction of the proof for this theorem is

strikingly similar to the implementation of normalization. Although

the details of the proof are equally interesting, we will only discuss

the required definitions and sketch the proof of the main theorems

to keep this section concise. We encourage the curious reader to see

the implementation of the full proof for further details (see A.1 for

link). We will prove the correctness of normalization by showing

that evaluation and reification are correct. To enable the definition

of correctness for these functions, we must first relate terms and

semantic values using logical relations.

7.1 Kripke Logical Relations
Wewill prove the correctness theorem using Kripke logical relations

à la Coquand [1993]. In this section, we define these logical relations.

Definition 7.1 (Logical relation R). A relation R between terms

and semantic values, indexed by a type b, is defined by induction

on b:

R : {b : Ty}→ BCC a b → Sem a ⟦ b ⟧→ Set
R {1} t v = ⊤

R {base} t v = t ≈ q v
R {b1 ∗ b2} t v = R (exl • t) (proj1 v) × R (exr • t) (proj2 v)
R {b1 ⇒ b2} t v = (s : Sel c _)
→ R t’ x → R (apply • pair (liftBCC s t) t’) (v s x)

R {0} t v = R0 t v
R {b + c} t v = R+ t v

Intuitively, the relation R establishes a notion of equivalence

between terms and semantic values, but we will say related instead

of equivalent to be pedantic. For example, for the case of products,

it states that composing the combinator exlwith a term is related to

applying the projection proj1 on a value—and similarly for exr and
proj2. In the unit case, it states that terms and values are trivially

related. For base types, it states that terms must be convertible to

the quotation of values, since values are normal forms by definition

of ⟦_⟧. For the case of exponentials, the definition states that t ,
which returns an exponential, is related to a functional value v ,
if for all related “arguments” t ′ and x , the resulting values of the

application are related. As usual, since v is a function generalized

over selections, the relation also states that it must hold for all

appropriate selections.

For the case of empty and sum types, we need a relation between

terms and trees—which is defined by Rt as follows.

Definition 7.2 (Logical relation Rt). A relation Rt between terms

and trees, indexed by another relation Rl between terms and values

in the leaves, is defined by induction on the tree:

Rt : (Rl : BCC a1 b → Sem a1 B’ → Set)
→ BCC a b→ Tree a B’→ Set

Rt Rl t (leaf a) = Rl t a
Rt Rl t (dead x) = t ≈ init • qNe x
Rt Rl t (branch x v1 v2) = ∃2 ń t1 t2
→ (Rt Rl t1 v1) × (Rt Rl t2 v2) × (t ≈ Case (qNe x) t1 t2)

Intuitively, the relation Rt states that a term is related to a tree if

the term is related to the values in the leaves. The key idea in the

definition of Rt for the leaf case is to parameterize the definition by

a relation Rl between terms and leaf values. Note that the relation

R cannot be used here (instead of a parameterized relation Rl) since
its type is more specific than the relation needed for leaves. For the

case of dead leaves with a neutral returning 0, the definition states

that the t must be convertible to elimination of 0 using init. In the

branch case, it states the inductive step: t is related to a decision

branch in the tree, if t is convertible to a decision over the neutral

x (implemented by Case) for some t1 and t2 related to subtrees v1
and v2.

Using the relation Rt, we can now define the remaining relations

for the empty and sum types as follows.

Definition 7.3 (Logical relations R0 and R+). Logical relations R0
and R+ are defined as special cases of Rt using the below defined

relations Rl0 and Rl+ respectively:

Rl0 : BCC a 0→ Sem a 0’ → Set
Rl0 _ ()

R0 : BCC a 0→ Tree a 0’ → Set
R0 t v = Rt Rl0 t v

Rl+ : BCC a (b + c)→ Sem a (⟦ b ⟧ +’ ⟦ c ⟧) → Set
Rl+ t (inj1 x) = ∃ ń t’→ R t’ x × (inl • t’ ≈ t)
Rl+ t (inj2 y) = ∃ ń t’→ R t’ y × (inr • t’ ≈ t)

R+ : BCC a (b + c) → Tree a (⟦ b ⟧ +’ ⟦ c ⟧) → Set
R+ t c = Rt Rl+ t c

The relation Rl0 is simply a type cast since a value of type Sem
a 0’ does not exist. On the other hand, the relation Rl+, states that
t is related to an injection inj1 x, if t is convertible to inl • t ′ for
some t ′ related to x—and similarly for inj2 and inr.

7.2 Proof of Correctness
We prove the main correctness theorem (Theorem 7.3) using two

intermediate theorems, namely the fundamental theorem of logical

relations (Theorem 7.1) and the correctness of reification (Theo-

rem 7.2), and various lemmata. In all the cases, we either perform

induction on the return type of a term or on a tree. The main idea

here is that the appropriate induction triggers the definition of the

relations, hence enabling Agda to refine the proof goal for a specific

case.

Lemma 7.1 (Invariance under conversion). If a term t is convert-
ible to t ′ and t ′ is related to a semantic value v , then t is related to

v .

invariance : t ≈ t’→ R t’ v→ R t v

Proof. By induction on the return type of t and t ′. The proof is
fairly straight-forward equational reasoning using the conversion

rules (≈). The empty and sum types can be handled by induction

on the tree. □

Exponential Elimination for BCC combinators PPDP ’19, October 7–9, 2019, Porto, Portugal

Lemma 7.2 (Lifting preserves relations). If a term t : BCC a b is
related to a value v : Sem a ⟦ b ⟧, then lifting the term is related to

lifting the value, for any applicable selection s .

liftPresR : R t v→ R (liftBCC s t) (lift ⟦ b ⟧ s v)

Proof. By induction on the return type of t . As in the previous

lemma, the empty and sum types can be handled by induction on

the tree. □

Definition 7.4 (Fundamental theorem). If a term t ′ is related to a

semantic valuev , then the composition t • t ′ is related to the evalu-
ation of t with the input v , for all terms t . That is, the fundamental

theorem holds if Fund t (defined below) holds for all t .

Fund : (t : BCC a b)→ Set
Fund {a} {b} t = {c : Ty} {t’ : BCC c a} {v : Sem c ⟦ a ⟧}

→ R t’ v→ R (t • t’) (eval t v)

Theorem 7.1 (Correctness of evaluation). The fundamental theo-

rem holds, or equivalently, evaluation is correct.

correctEval : (t : BCC a b) → Fund t

Proof. By induction on the term t . Most cases are proved by

the induction hypothesis and some equational reasoning . To en-

able equational reasoning, we must use the invariance lemma

(Lemma 7.1). For the case of curry, the key step is to make use

of the β rule for functions (from Section 2).

For the sum and empty types, recall that evaluation uses the

natural transformation runTree : Tree’ ⟦ a ⟧ ↠ ⟦ a ⟧. Hence, to
prove correctness of evaluation for these cases, we need a lemma

correctRunTree : Rt R t v→ R t v—which can be proved by induction
on the return type of t . The proof of this lemma also requires us

to prove correctness of all the natural transformations used by

runTree, which can be achieved in similar fashion to correctRunTree.
Note that we must use the lifting preservation lemma (Lemma 7.2),

wherever lifting is involved, for example, in the curry case. □

Lemma 7.3 (Correctness of reflect and reifyVal). i) The quotation

of a neutral form n is related to its reflection. ii) If a term t is related
to a value v , then t must be convertible to the normal form which

results from the quotation of reification of v .

correctReflect : {n : Ne a b}→ R (qNe n) (reflect n)
correctReifyVal : R t v→ t ≈ q (reifyVal v)

Proof. Implemented mutually by induction on the return type

of the neutral / term and using the invariance lemma (Lemma 7.1)

to do equational reasoning. Appropriate eta conversion rules are

needed for products, exponentials and sums. □

Theorem 7.2 (Correctness of reification). The fundamental theo-

rem proves that t is convertible to quotation of the value obtained

by evaluating and reifying t.

correctReify : (Fund t) → t ≈ q (reify (eval t))

Proof. By induction on the return type of term t . This theorem
follows from Lemma 7.3 and the other lemmata discussed above. □

Theorem 7.3 (Correctness of normal forms). A term is con-

vertible to the quotation of its normal form.

Proof. Since normalization is defined as the composition of

reification and evaluation, the correctness of normal forms follows

from the correctness of reification and evaluation:

correctNf : (t : BCC a b)→ t ≈ q (norm t)
correctNf t = correctReify (correctEval t)

□

7.3 Exponential Elimination Theorem
Using the syntactic elimination of exponentials illustrated earlier

using normal forms (Section 5.2), and the normalization procedure

which converts BCC terms to normal forms (Section 6), we finally

have the following exponential elimination theorem for BCC terms.

Theorem 7.4 (Exponential elimination). Given that a and b are

first-order types, every term f : BCC a b can be converted to an

equivalent term f ′ : DBC a b which does not use any exponentials.

Proof. From the normalization function norm implemented in

Section 6, and the correctness of normal forms by Theorem 7.3, we

know that there exists a normal form n : Nf a b resulting from the

application norm f such that f ≈ q n. Since a and b are first-order

types, we also have a DBC term qD n : DBC a b, which does not use
exponentials by construction. Additionally, since the function qD is

a restriction map of the function q, qD n must be equivalent to q n,
and hence to f . This can be shown by proving that the embedding

of the DBC term qD n into BCC is convertible to q n, and hence to

f . Thus we have an equivalent DBC term f ′ = qD n. □

8 SIMPLICITY, AN APPLICATION
Simplicity is a typed combinator language for programming smart

contracts in blockchain applications [O’Connor 2017]. It was de-

signed as an alternative to Bitcoin Script, especially to enable static

analysis and estimation of execution costs. The original design of

Simplicity only allows unit, product and sum types. It does not

allow exponentials, the empty type or base types. The simple na-

ture of these types enables calculation of upper bounds on the time

and memory requirements of executing a Simplicity program in an

appropriate execution model. For example, the bit-size of a value is

computed using its type as follows.

size 1 = 0
size (t1 ∗ t2) = size t2 ‘+ size t2
size (t1 + t2) = 1 ‘+ max (size t1) (size t2)

Note that the operator ‘+ is simply addition for natural numbers

renamed to avoid name clash with the constructor +. The additional
bit is need in the sum case to represent the appropriate injection.

Despite Simplicity’s ability to express any finite computation be-

tween the allowed types, its low-level nature makes it cumbersome

to actually write programs since it lacks common programming

abstractions such as functions and loops. Even as a compilation

target, Simplicity is too low-level. For example, compiling func-

tional programs to Simplicity burdens the compiler with the task of

defunctionalization since Simplicity does not have a corresponding

notion of functions. To solve this issue, Valliappan et al. [2018]

PPDP ’19, October 7–9, 2019, Porto, Portugal Nachiappan Valliappan and Alejandro Russo

note that Simplicity can be modeled in (distributive) bicartesian

categories, and propose extending Simplicity with exponentials,

and hence to bicartesian closed categories without the empty type.

Although extending Simplicity with exponentials makes it more

expressive, it complicates matters for static analysis. For example,

the extension of the size function is already a matter of concern:

size (t1 ⇒ t2) = size t2 ^ size t1

Valliappan et al. [2018] avoid this problem by extending the bit

machine with the ability to implement closures, but the problem

of computing an upper bound on execution time and memory

consumption remains open. Exponential elimination provides a

solution for this: Simplicity programs with exponentials can be

compiled by eliminating exponentials to programs without expo-

nentials, hence providing a more expressive higher-order target

language—while also retaining the original properties of static anal-

ysis.

Since Simplicity resembles BCC and DBC combinators, they can

be translated to BCC, and from DBC in a straight-forward manner

[Valliappan et al. 2018]:

SimplToBCC : Simpl a b→ BCC a b
DBCToSimpl : DBC a b → Simpl a b

Exponential elimination bridges the gap between BCC and DBC

terms:

elimExp : firstOrd a→ firstOrd b → BCC a b → DBC a b
elimExp p q t = qD p q (norm t)

Thus, we can implement an exponential elimination algorithm for

Simplicity programs:

elimExpS : firstOrd a→ firstOrd b → Simpl a b → Simpl a b
elimExpS p q t = DBCToSimpl (elimExp p q (SimplToBCC t))

The difference between the input and output programs is of course

that the input may have exponentials, but the output will not. The
requirements that the input and output of the entire program be

first-order types is a harmless one since such programs must have

an observable input and output anyway.

Note that we have overlooked the empty type and the combinator

init in the translation of DBCToSimpl here. However, this can be

mitigated easily by adding an additional predicate nonEmpty : Ty
→ Set to discharge this case —as in Section 5.2, thanks to the weak

subformula property!

Although our work shows that it is possible to eliminate expo-

nentials from Simplicity programs, the implementation provided

here might not be the most practical one. Normal forms are in η-
expanded form, which means that the generated programs may be

much larger than necessary, hence leading to code explosion. More-

over, the translation to BCC and from DBC is also an unnecessary

overhead. It may be possible to tame code explosion by normal-

izing without η expansion [Lindley 2005]. The latter problem, on

the other hand, can be solved easily by implementing exponen-

tial elimination directly on Simplicity programs. We leave these

improvements as suggestions for future work.

9 RELATEDWORK
Selections resemble weakenings (also called order preserving embed-
dings) in lambda calculus [Altenkirch et al. 1995]. Weakenings are

defined for typing contexts such that a weakening Γ ⊑ ∆ selects a

“subcontext” ∆ from the context Γ [McBride 2018]. Selections, on

the other hand, are simply a subset of BCC terms that select compo-

nents of the input. Conceptually, selections are the BCC-equivalent
of weakenings and they have properties (discussed in Section 4)

similar to weakenings. Most importantly, selections unify the no-

tion of weakenings and variables—since they are used in neutrals

(as “variables”) and for lifting (as “weakenings”).

Altenkirch et al. [2001] implement NbE to solve the decision prob-

lem for STLC with all simple types except the empty type (ń⇒1∗+).
Balat et al. [2004] solve the extensional normalization problem us-

ing NbE for the STLC including the empty type (ń⇒1∗+0). Abel
and Sattler [2019] provide an account of NbE for ń⇒1∗+0 using

decision trees—the techniques of which they go on to use for more

advanced calculi. They in turn attribute the idea of decision trees

for normalizing sum types to Altenkirch and Uustalu [2004]. Our

interpretation model is based on that of Abel and Sattler [2019] and

the generated normal forms are not unique—caused by commuting

case conversions and the overlap between selections and projec-

tions. The primary difference between earlier efforts and or work

is that we implement NbE for a combinator language.

Altenkirch and Uustalu [2004] also prove correctness of normal

forms using logical relations, but only for closed lambda terms.

Our logical relations have a much more general applicability since

they are indexed by the input (or equivalently by the typing con-

text). Moreover, we prove correctness for interpreting sums using

decision trees by the means of logical relations generalized over

arbitrary presheaf interpretations. Since the decision tree monad

Tree’ is a strong monad [Moggi 1991], it should be possible to fur-

ther extend this proof technique to normalization of calculi with

computational effects [Filinski 2001] [Abel and Sattler 2019].

10 FINAL REMARKS
In this paper, we have shown that BCC terms of first-order types

can be normalized to terms in a sub-language without exponentials

based on distributive bicartesian categories. To this extent, we have

implemented normalization using normalization by evaluation, and

shown that normal forms are convertible to the original term in

the equational theory of BCCs. Moreover, we have also shown

the applicability of our technique to erase exponentials from a

combinator language called Simplicity. Our work enables a closure-

free implementation of BCC combinators and answers previously

open questions about the elimination of exponentials.

As noted earlier, the normal forms of BCC combinators presented

here are not normal forms of the equational theory specified by

the conversion relation ≈. This is because the syntax of normal

forms does not enforce normal forms of equivalent terms to be

unique. For example, the normal forms ne-b (sel (drop endb)) and
ne-b (fst (sel (keep endb))) are syntactically different, but inter-

convertible when quoted. Hence, the normalization procedure does

not derive the conversion relation ≈, and cannot be used to de-

cide it. Instead, our notion of normal forms is characterized by the

Exponential Elimination for BCC combinators PPDP ’19, October 7–9, 2019, Porto, Portugal

weak subformula property, and aimed at the eliminating interme-

diate values by restricting the unruly composition which allows

introduction and elimination of arbitrary values.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments on earlier

drafts of this paper. We thank Andreas Abel for suggesting NbE

and for the many discussions about implementing and proving the

correctness of NbE. The first author took inspiration for this work

from Andreas’ lecture notes on NbE for intuitionistic propositional

logic at the Initial Types Club. We would also like to thank Thierry

Coquand, Fabian Ruch and Sandro Stucki for the insightful discus-

sions on the topic of exponential elimination. This work was funded

by the Swedish Foundation for Strategic Research (SSF) under the

projects Octopi (Ref. RIT17-0023) and WebSec (Ref. RIT17-0011), as

well as the Swedish research agency Vetenskapsrådet.

REFERENCES
Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. 1991. Explicit substitutions.

Journal of functional programming 1, 4 (1991), 375–416.

Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for Call-by-

Push-Value and Polarized Lambda-Calculus. arXiv preprint arXiv:1902.06097 (2019).

Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. 2001. Normaliza-

tion by evaluation for typed lambda calculus with coproducts. In Proceedings 16th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 303–310.

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical

reconstruction of a reduction free normalization proof. In International Conference
on Category Theory and Computer Science. Springer, 182–199.

Thorsten Altenkirch and Tarmo Uustalu. 2004. Normalization by evaluation for λ→
2. In International Symposium on Functional and Logic Programming. Springer,
260–275.

Steve Awodey. 2010. Category theory. Oxford University Press.

Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. 2004. Extensional normalisation

and type-directed partial evaluation for typed lambda calculus with sums. In POPL,
Vol. 4. 49.

Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalization by

evaluation. In Prospects for Hardware Foundations. Springer, 117–137.
Ulrich Berger and Helmut Schwichtenberg. 1991. An inverse of the evaluation func-

tional for typed lambda-calculus. In [1991] Proceedings Sixth Annual IEEE Symposium
on Logic in Computer Science. IEEE, 203–211.

Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda–a functional

language with dependent types. In International Conference on Theorem Proving in
Higher Order Logics. Springer, 73–78.

Catarina Coquand. 1993. From semantics to rules: A machine assisted analysis. In

International Workshop on Computer Science Logic. Springer, 91–105.
Guy Cousineau, P-L Curien, andMichel Mauny. 1987. The categorical abstract machine.

Science of computer programming 8, 2 (1987), 173–202.

P-L Curien. 1986. Categorical combinators. Information and Control 69, 1-3 (1986),
188–254.

Conal Elliott. 2017. Compiling to categories. Proceedings of the ACM on Programming
Languages 1, ICFP (2017), 27.

Andrzej Filinski. 2001. Normalization by evaluation for the computational lambda-

calculus. In International Conference on Typed Lambda Calculi and Applications.
Springer, 151–165.

Yves Lafont. 1988. The linear abstract machine. Theoretical computer science 59, 1-2
(1988), 157–180.

Sam Lindley. 2005. Normalisation by evaluation in the compilation of typed functional

programming languages. (2005).

Saunders MacLane and Ieke Moerdijk. 1992. Sheaves in geometry and logic: a first

introduction to topos theory. (1992).

Conor McBride. 2018. Everybody’s got to be somewhere. Electronic Proceedings in
Theoretical Computer Science 275 (2018), 53–69.

John C Mitchell and Eugenio Moggi. 1991. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic 51, 1-2 (1991), 99–124.
Eugenio Moggi. 1991. Notions of computation and monads. Information and computa-

tion 93, 1 (1991), 55–92.

Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Everything

old is new again: quoted domain-specific languages. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation. ACM, 25–36.

Ulf Norell. 2007. Towards a practical programming language based on dependent type
theory. Vol. 32. Citeseer.

Russell O’Connor. 2017. Simplicity: A new language for blockchains. In Proceedings
of the 2017 Workshop on Programming Languages and Analysis for Security. ACM,

107–120.

John C Reynolds. 1998. Definitional interpreters for higher-order programming lan-

guages. Higher-order and symbolic computation 11, 4 (1998), 363–397.

Anne Sjerp Troelstra and Helmut Schwichtenberg. 2000. Basic proof theory. Number 43.

Cambridge University Press.

Nachiappan Valliappan, Solène Mirliaz, Elisabet Lobo Vesga, and Alejandro Russo. 2018.

Towards Adding Variety to Simplicity. In International Symposium on Leveraging
Applications of Formal Methods. Springer, 414–431.

A APPENDIX
A.1 Agda Implementation
The complete Agda implementation of the normalization procedure

and mechanization of the proofs in this paper can be found at the

URL https://github.com/nachivpn/expelim

A.2 Implementation of distributivity in BCC

Distr : BCC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))
Distr = apply • (pair
(match
(curry (inl • pair exr exl))
(curry (inr • pair exr exl)) • exr)

exl)

https://github.com/nachivpn/expelim

	Abstract
	1 Introduction
	2 BCC Combinators
	3 Overview of Normalization
	4 Selections
	5 Normal forms
	5.1 Weak Subformula Property
	5.2 Syntactic Elimination of Exponentials

	6 Normalization for BCC
	6.1 Interpretation in Presheaves
	6.2 NbE for CCC Fragment
	6.3 NbE for Sums and Empty Type

	7 Correctness of Normal Forms
	7.1 Kripke Logical Relations
	7.2 Proof of Correctness
	7.3 Exponential Elimination Theorem

	8 Simplicity, an application
	9 Related Work
	10 Final Remarks
	Acknowledgments
	References
	A Appendix
	A.1 Agda Implementation
	A.2 Implementation of distributivity in BCC

