Normalization for Fitch-Style Modal Lambda Calculi

Nachiappan Valliappan¹, Fabian Ruch, Carlos Tomé Cortiñas¹

¹Chalmers University of Technology

Modal Logic Intuitionistic K (IK)

$$\frac{\cdot \vdash A}{\Gamma \vdash \Box A} \text{ NECESSITATION }$$

$$\frac{1}{\Gamma \vdash \Box(A \to B) \to \Box A \to \Box B} \text{ Axiom K}$$

Intuitionistic Logics With Axioms Beyond K

Fitch-style Lambda Calculus for IK (λ_{IK}) [Borghuis 1994]

 $\Gamma ::= \cdot \mid \Gamma, x : A \mid \Gamma, \blacktriangle$

$$\frac{\Gamma, \mathbf{A} \vdash t : A}{\Gamma, x : A, \Gamma' \vdash x : A} \mathbf{A} \notin \Gamma' \qquad \frac{\Gamma, \mathbf{A} \vdash t : A}{\Gamma \vdash \mathbf{box} \ t : \Box A} \qquad \frac{\Gamma \vdash t : \Box A}{\Gamma, \mathbf{A}, \Gamma' \vdash \mathbf{unbox} \ t : A} \mathbf{A} \notin \Gamma'$$

 $A \nvDash \Box A \qquad \Box (A \times B) \vdash \Box A$ $\Box A \nvDash A \qquad \Box A, \Box B \vdash \Box (A \times B)$

Normalization Rules

(β) unbox (box t) $\longrightarrow t$ (η) $\Gamma \vdash t \longrightarrow box (unbox <math>t$) : $\Box A$

Normalization by Rewriting?

Image credit: Sam Lindley, University of Edinburgh

Normalization by Rewriting?

 η rules complicate rewriting

Each system demands different syntactic lemmas

$$\lambda_{\mathrm{IK}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Phi, \Gamma' \vdash \mathbf{unbox} \ t : A} \Phi \notin \Gamma' \qquad \lambda_{\mathrm{IK4}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Phi, \Gamma' \vdash \mathbf{unbox} \ t : A}$$
$$\lambda_{\mathrm{IT}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} \#_{\Phi}(\Gamma') \leq 1 \qquad \lambda_{\mathrm{IS4}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A}$$

Normalization by Evaluation

Image credit: Sam Lindley, University of Edinburgh

• *Part 1*: Identify the possible worlds semantics

• Part 2: Construct NbE models as instances

Possible Worlds Semantics for IK [Božić & Došen 1984]

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i, R_m)
 R_i is a preorder
 $R_i; R_m \subseteq R_m; R_i$
 $\llbracket \tau \rrbracket_w = V(w, \tau)$
 $\llbracket A \to B \rrbracket_w = \forall w'. w R_i w' \Rightarrow \llbracket A \rrbracket_{w'} \Rightarrow \llbracket B \rrbracket_{w'}$
 $\llbracket \Box A \rrbracket_w = \forall w'. w R_m w' \Rightarrow \llbracket A \rrbracket_{w'}$

Monotonicity: $wR_iw' \Rightarrow \llbracket A \rrbracket_w \Rightarrow \llbracket A \rrbracket_{w'}$

Possible Worlds Semantics for λ_{IK}

Model \mathcal{M} : (\mathcal{F}, V) Frame \mathcal{F} : (\mathcal{W}, R_i, R_m) R_i is a preorder $R_i; R_m \subseteq R_m; R_i$ $\llbracket \cdot \rrbracket_w = \top$ $\llbracket \Delta, A \rrbracket_w = \llbracket \Delta \rrbracket_w \land \llbracket A \rrbracket_w$ $\llbracket\Delta, \mathbf{A} \rrbracket_w = ??$

Box ~ Future

Lock ~ Past

Possible Worlds Semantics for λ_{IK}

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i, R_m)
 R_i is a preorder
 $R_i; R_m \subseteq R_m; R_i$
 $R_m; R_i \subseteq R_i; R_m$
 $\llbracket \cdot \rrbracket_w = \top$
 $\llbracket \Delta, A \rrbracket_w = \llbracket \Delta \rrbracket_w \wedge \llbracket A \rrbracket_w$
 $\llbracket \Delta, \mathbf{A} \rrbracket_w = \exists w^\circ. \ w^\circ R_m w \wedge \llbracket \Delta \rrbracket_w^\circ$

Monotonicity: $wR_iw' \Rightarrow \llbracket \Delta \rrbracket_w \Rightarrow \llbracket \Delta \rrbracket_{w'}$

Possible Worlds Semantics for λ_{IK}

Model \mathcal{M} : (\mathcal{F}, V) Frame \mathcal{F} : (\mathcal{W}, R_i, R_m) R_i is a preorder $R_i; R_m = R_m; R_i$

$$(_) : \Gamma \vdash A \Rightarrow (\forall w. [[\Gamma]]_w \Rightarrow [[A]]_w)$$

quote : $(\forall w. [[\Gamma]]_w \Rightarrow [[A]]_w) \Rightarrow \Gamma \vdash_{\mathrm{Nf}} A$

norm : $\Gamma \vdash A \to \Gamma \vdash_{\operatorname{Nf}} A$ norm $t = \operatorname{quote} \llbracket t \rrbracket$

Normal Forms

Constructing an NbE Model for λ_{IK}

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i, R_m)
 R_i is a preorder
 $R_i; R_m = R_m; R_i$
quote : $(\forall w. [\![\Gamma]\!]_w \Rightarrow [\![A]\!]_w) \Rightarrow \Gamma \vdash_{\mathrm{Nf}} A$
 $standard!$
[Coquand 1993]
 $\mathcal{W} = \mathrm{Contexts}$
 $V(\Gamma, \tau) = \Gamma \vdash_{\mathrm{Ne}} \tau$
 $R_i = \leq (\mathrm{Weaker})$
 $R_m = ??$

Key Observation From the Syntax of $\lambda_{IK/IT/IK4/IS4}$

 $\Gamma \vdash \mathbf{box} \ t$

$$\begin{split} \lambda_{\mathrm{IK}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \textcircled{\bullet}, \Gamma' \vdash \mathbf{unbox} \ t : A} \textcircled{\bullet} \notin \Gamma' \\ \frac{\Gamma, \textcircled{\bullet} \vdash A}{-\mathbf{box} \ t : \Box A} & \lambda_{\mathrm{IK4}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \textcircled{\bullet}, \Gamma' \vdash \mathbf{unbox} \ t : A} \\ \lambda_{\mathrm{IT}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} & \#_{\textcircled{\bullet}}(\Gamma') \leq \mathbb{I} \\ \lambda_{\mathrm{IS4}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} & \#_{\textcircled{\bullet}}(\Gamma') \leq \mathbb{I} \\ \lambda_{\mathrm{IS4}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} \end{split}$$

Key Observation From the Syntax of $\lambda_{IK/IT/IK4/IS4}$

Constructing an NbE Model for λ_{IK}

$$\lambda_{\rm IK} \; \frac{\Gamma \vdash t : \Box A}{\Gamma, \triangle, \Gamma' \vdash \text{unbox } t : A} \; \stackrel{\bigtriangleup \notin \Gamma'}{=} \;$$

$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \blacksquare, \Gamma' \text{ s.t. } \blacksquare \notin \Gamma'$

Constructing an NbE Model for $\lambda_{\rm IT}$

 $T: \Box A \to A$

$$\lambda_{\mathrm{IT}} \; \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \; t : A} \; \#_{\textcircled{}}(\Gamma') \leq 1$$

$$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \Gamma' \text{ s.t. } \#_{\square}(\Gamma') \leq 1$$

 $R_m \text{ is reflexive}$

Constructing an NbE Model for λ_{IK4}

 $4: \ \Box A \to \Box \Box A$

$$\lambda_{\mathrm{IK4}} \ \frac{\Gamma \vdash t : \Box A}{\Gamma, \blacktriangle, \Gamma' \vdash \mathbf{unbox} \ t : A}$$

$$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \blacksquare, \Gamma'$$

 R_m is transitive

Constructing an NbE Model for λ_{IS4}

$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \Gamma'$

 R_m is reflexive and transitive

quote :
$$(\forall \Delta, \llbracket \Gamma \rrbracket_{\Delta} \Rightarrow \llbracket A \rrbracket_{\Delta}) \Rightarrow \Gamma \vdash_{\operatorname{Nf}} A$$

using reify : $\forall \Gamma, \llbracket \Box A \rrbracket_{\Gamma} \Rightarrow \Gamma \vdash_{\operatorname{Nf}} \Box A$
Know $\llbracket \Box A \rrbracket_{\Gamma} = \forall \Gamma', \Gamma R_m \Gamma' \Rightarrow \llbracket A \rrbracket_{\Gamma'}$
Pick Γ' as Γ, \clubsuit to get $\llbracket A \rrbracket_{\Gamma, \bigstar}$
reify $\llbracket A \rrbracket_{\Gamma, \bigstar}$ to get $n : \Gamma, \blacktriangle \vdash_{\operatorname{Nf}} A$
box $n : \Gamma \vdash_{\operatorname{Nf}} \Box A$

Potential Applications of NbE for Modal Lambda Calculi

Interpretations of $\Box A$:

Staging: Code of type A

Security: Sensitive values of type A

Purity: Pure values of type A

NbE can be used to prove:

- Application-specific theorems, e.g., noninterference
- Completeness theorems, e.g., completeness of possible worlds semantics

Necessitation is Admissible in $\lambda_{\rm IK}$

$\vdash A \implies \vdash \Box A$

$$\begin{array}{c} \vdash t : A \\ \hline \hline \blacksquare \vdash t : A \\ \hline \blacksquare \vdash t : A \end{array} \text{ by renaming} \\ \vdash \mathbf{box} \ t : \Box A \end{array}$$

What About "Denecessitation"?

$\vdash \Box A \implies \vdash A$

How would you prove this?

Denecessitation Can be Proved Using Normal Forms

$\vdash \Box A \implies \vdash A$

 $\mathbf{\widehat{h}} \vdash_{\mathrm{ne}} \mathbf{unbox} \ t : B$

No neutrals in empty context, dismissed!

Only culprit that introduces $\widehat{\theta}$

$$\vdash_{\mathrm{nf}} t : A$$

 $\vdash_{\!\!\!\mathrm{nf}}\mathbf{box}\ t:\Box A$

Remove
$$\square$$
 to get $\vdash_{nf} t : \Box A$

In a Nutshell

Normalization can be achieved for Fitch-style modal lambda calculi by constructing NbE models as instances of their possible-world semantics, thus avoiding ad hoc syntactic approaches based on rewriting.

Agda mechanization: <u>github.com/nachivpn/k</u>

EOM