Towards Secure IoT Programming in Haskell

Nachiappan Valliappan
Chalmers University of Technology
Gothenburg, Sweden
nacval@chalmers.se

Robert Krook
Chalmers University of Technology
Gothenburg, Sweden
krookr@chalmers.se

Alejandro Russo
Chalmers University of Technology
Gothenburg, Sweden
russo@chalmers.se

Koen Claessen
Chalmers University of Technology
Gothenburg, Sweden
koen@chalmers.se

Abstract

IoT applications are often developed in programming languages with low-level abstractions, where a seemingly innocent mistake might lead to severe security vulnerabilities. Current IoT development tools make it hard to identify these vulnerabilities as they do not provide end-to-end guarantees about how data flows within and between appliances. In this work we present Haski, an embedded domain specific language (eDSL) in Haskell for secure programming of IoT devices. Haski enables developers to write Haskell programs that generate C code without falling into many of C’s pitfalls. Haski is designed after the synchronous programming language Lustre, and sports a backwards compatible information-flow control extension to restrict how sensitive data is propagated and modified within the application. We present a novel eDSL design which uses recursive monadic bindings and allows a natural use of functions and pattern matching to write embedded programs. To showcase Haski, we implement a simple smart house controller where communication is done via low-energy Bluetooth on the Zephyr IoT OS.

CCS Concepts: • Software and its engineering → Domain specific languages; • Security and privacy → Information flow control.

Keywords: Synchronous programming, Information-flow Control, eDSL, IoT, Haskell

1 Introduction

The Internet of Things (IoT) conceives a future where “things” (embedded electronics) can be interconnected. While a compelling vision, recent events have demonstrated the high vulnerability of IoT (e.g., [Bertino and Islam 2017; Fernandes et al. 2016; Schuster et al. 2018; Wang et al. 2018]). Hence, it has become important to develop security solutions which address the concerns of unauthorized access to data and privacy loss.

We believe there are two major aspects which contribute to the current poor state-of-the-art in IoT security: the chosen programming languages for development and the lack of end-to-end guarantees. IoT development is often done in programming languages (like C) with low-level of abstractions, where a seemingly innocent mistake might lead to severe vulnerabilities like buffer overflows. Similarly, development tools present no end-to-end guarantees about how data flows within and between devices—thus making it hard to confine sensitive information.

Figure 1 shows the running example throughout this paper: a simplified smart house controller called Halexa. Halexa...
consists of a micro-controller with Wifi access (required to fetch software updates) which is connected to three Bluetooth devices: a thermometer, a motion sensor, and a window. The micro-controller software is responsible for opening the window when it is too hot inside the house. We assume that there is no Air Conditioning in the house—not an uncommon assumption in, for example, Nordic countries. While simple, this scenario presents interesting security and safety concerns: (i) to avoid robbery, windows must only be opened when there is someone at home, and (ii) the motion sensor data should be kept confined within the system and not leaked via Internet—leaking it can hint burglars about the vacancy of the house. Observe that the micro-controller needs to have access to the sensors’ data in order to deliver its function. Can we use Haskell to program constrained devices and ensure the mentioned security requirements by construction?

In this paper, we present Haski, an embedded domain specific language in Haskell for secure programming of IoT devices. Haski enables developers to write Haskell programs that generate C code without falling into many of C’s pitfalls (e.g., those related to memory safety, undefined behavior, etc.). Haski follows the footsteps of the synchronous programming language Lustre [Caspi et al. 1987; Halbwachs et al. 1991], which is an event-driven programming language with strong guarantees on resource usage—a must when programming low-power devices often found in IoT systems. Haski enhances Lustre with confidentiality and integrity security guarantees, as well as a means of communicating with streams generated by callback functions.

By adopting a synchronous programming model, Haski is able to provide resource bounds while removing memory-based security vulnerabilities by construction. Haski’s design and implementation is unique compared with previous Haskell eDSLs for Lustre-like languages [Bjesse et al. 1998; Hawkins et al. 2011]. Firstly, Haski presents a novel monadic design which allows programmers to leverage Haskell’s monadic bindings (i.e., do and mdo) to specify streams as literate as possible. Secondly, Haski conceives a new DSL technique to compile Haskell functions on Haski-expressions into callable components of the target language. Finally, Haski provides user-defined enumeration types, where developers can simply use Haskell’s case expression to inspect them, while raising a type-error in case of non-exhaustive patterns—thus making the code more robust. To address end-to-end guarantees, Haski incorporates information-flow control (IFC) techniques [Sabelfield and Myers 2003] to restrict how data propagates and gets modified—thus protecting the confidentiality and integrity of data. With IFC, developers can, for instance, incorporate third-party Haskell code to analyze sensitive data like that coming from the motion sensor while still preventing data leaks. To keep the types in eDSL simple, Haski enforces IFC at code-generation time by only tracking data propagation among end-points streams indicated by developers, e.g., the thermometer, motion sensor, window and Internet communication channel in Figure 1.

Contributions. The main research contribution of this paper is the design and implementation of Haski. We show how to design a synchronous language that is type-safe, protects confidentiality and integrity of data, handles I/O, and generates C code. Importantly, our design does not require any modifications to GHC or the use of compiler plug-ins. Instead, Haski uses embedding techniques by leveraging advanced type-level features of GHC such as GADTs [Peyton Jones et al. 2006], data kinds [Yorgey et al. 2012], existential types, and pattern synonyms [Pickering et al. 2016]. Some of the techniques developed for Haski can be generalized and used for general DSL design in Haskell.

2 Haski by Example

Haski programs are written in Haskell using a special set of combinators. In this section, we illustrate various examples of Haski programs and showcase these combinators. For the upcoming examples, we use the data type Action to represent an action indicating whether our user Octavius has left (or entered) the house.

\[\text{data Action = Left | Entered} \]

The purpose of the Action data type (instead of, for example, Bool) is to illustrate the use of user-defined data types in Haski programs.

Recursive definitions. A Haski program is a collection of stream definitions written in the Haski monad. A simple stream can be defined using the letDef combinator, which has the following type.

\[\text{letDef :: Stream } a \rightarrow \text{Haski } (\text{Stream } a) \]

Using Haskell’s do notation, we can use this combinator to bind streams to variables as follows.

\[\text{left :: Haski } (\text{Stream } \text{Action}) \]
\[\text{left = do} \]
\[\quad x \leftarrow \text{letDef} \ (\text{val } \text{Left}) \]
\[\quad \text{return } x \]

This program defines the constant stream that repeats the action Left as Left, Left, Left, … using the combinator val :: HT a ⇒ a → Stream a. The type constraint HT ensures that a type is recognized by the Haski compiler and can be compiled by it. In this case, we may suppose that Action already satisfies this constraint, but we will later see how this is made possible.

Streams may also be defined recursively using the fby combinator (read followed by).

\[\text{fby :: HT } a \Rightarrow a \rightarrow \text{Stream } a \rightarrow \text{Haski } (\text{Stream } a) \]
The stream \(v \ 'fby' \) begins with the value \(v \) and is followed by the stream \(s \). For example, we can define a stream of alternating actions such as \(\text{Left}, \text{Entered}, \text{Left}, \text{Entered}, \ldots \) using the \(fby \) combinator as follows.

\[
alt :: \text{Haski} (\text{Stream Action}) = \text{mdo}
\]

\[
x \leftarrow \text{Left} 'fby' y
y \leftarrow \text{Entered} 'fby' x
\text{return} \ x
\]

The stream \(x \) here defines a stream that begins with \(\text{Left} \) and is followed by \(y \). Similarly, \(y \) begins with \(\text{Entered} \) and is followed by \(x \). We use the keyword \texttt{mdo}¹ instead of \texttt{do} for (mutually) recursive definitions.

Pattern matching definitions. Streams can also be defined by pattern matching on values of other streams using the \texttt{match} combinator.

\[
\text{match} :: (\text{FinEnum} \ a, \text{Streams} \ b) \Rightarrow \text{Stream} \ a \rightarrow (a \rightarrow b) \rightarrow \text{Haski} \ b
\]

The combinator application \(\text{match} \ e \ f \) defines the streams resulting from applying the observed value of \(e \) to \(f \). The definition of \(f \) enables pattern matching on the value of \(e \). The type constraint \(\text{FinEnum} \) subjects the type \(a \) to be \textit{finitely enumerable}, and the constraint \(\text{Streams} \) overloads the type \(b \) to allow the function \(f \) to return multiple streams such as lists or tuples of streams. The constraint \(\text{FinEnum} \) ensures that \(\text{match} \) can only be used to pattern match on streams with finitely many values—a restriction which later enables code generation.

To illustrate the use of \(\text{match} \), let us implement a simple cache mechanism that accepts requests to read and write actions, and responds with the last-written action, beginning with \(\text{Left} \). Let us represent the request protocol using the data type \textit{Req}.

\[
\text{data} \ \text{Req} = \text{Read} \mid \text{Write Action}
\]

Evidently, \(\text{Req} \) is finitely enumerable since it has only three possible values: \(\text{Read}, \text{Write Left}, \) and \(\text{Write Entered} \). Hence we may use \(\text{match} \) on a stream \(\text{req} :: \text{Stream} \ \text{Req} \) as follows.

\[
\ldots
\]

\[
\text{return} \ \text{resp}
\]

\[
\text{data} \ \text{Req} = \text{Read} \mid \text{Write Action}
\]

Evidently, \(\text{Req} \) is finitely enumerable since it has only three possible values: \(\text{Read}, \text{Write Left}, \) and \(\text{Write Entered} \). Hence we may use \(\text{match} \) on a stream \(\text{req} :: \text{Stream} \ \text{Req} \) as follows.

\[
\ldots
\]

\[
\text{return} \ \text{resp}
\]

We shall use ellipses (…) in the code to hide the parts that are not relevant to the point being made. The response stream \(\text{resp} \) is defined by matching against the request stream \(\text{req} \), where the second argument is a lambda-expression which pattern matches on its argument. We write \(\lambda \text{case} \) instead of \(\lambda x \rightarrow \text{case} \ x \) of\(^2\).

The combinator \(\text{match} \) allows us to leverage the benefits of pattern matching in Haskell (such as variable binding, wildcards, guards, etc.) to generate code with simpler branching operators in the target language. For example, the definition of \(\text{resp} \) which pattern matches on \(\text{req} \) in the previous example, generates the following C code.

\[
\text{switch} (\text{req})\{
\begin{align*}
\text{case} \ \text{READ} & \rightarrow \text{resp} = \ldots \\
\text{case} \ WLEFT & \rightarrow \text{resp} = \ldots \\
\text{case} WENTERED & \rightarrow \text{resp} = \ldots
\end{align*}
\}
\]

The cases are representative of the C values generated for the Haskell values of type \(\text{Req} \).

A pattern match performed using \(\text{match} \) must handle all possible cases, and is enforced by the Haski compiler. If we leave out one of the cases in the above example, the Haski compiler throws an error such as the following—with line-numbers!

\[
\text{ghci}\gt\text{compile} \ldots
\]

*** Exception: Cache.hs:(20,18)-(21,22):
Non-exhaustive patterns in case

Nodes. The stream \(\text{req} \) in the previous example has not been defined locally, and we wish for it to be a variable which can be substituted for by different contexts. \(\textit{Nodes} \) allow us to define subprograms that abstract over stream expressions such as \(\text{req} \), and thus enable an external caller to supply them. In Haski, nodes are written as Haskell functions, as shown below.

\[
\text{data} \ \text{Req} = \text{Read} \mid \text{Write Action}
\]

Evidently, \(\textit{Req} \) is finitely enumerable since it has only three possible values: \(\text{Read}, \text{Write Left}, \) and \(\text{Write Entered} \). Hence we may use \(\text{match} \) on a stream \(\textit{req} :: \text{Stream} \ \textit{Req} \) as follows.

\[
\ldots
\]

\[
\text{return} \ \text{resp}
\]

A node is created using the \texttt{node} combinator by providing a name string and a function as arguments.

\[
\text{node} :: (\text{Arg} \ a, \text{Box} \ b) \Rightarrow \text{String} \rightarrow (a \rightarrow b) \rightarrow a \rightarrow b
\]

The name string is used to identify a node uniquely during compilation, and the function defines the body of the node. The type constraints \textit{Arg} and \textit{Box} together ensure that the function \(a \rightarrow b \) accepts streams as arguments and produces a stream result in the \textit{Haski} monad, i.e., has a type of the shape \(\text{Stream} a' \rightarrow \text{Stream} b' \rightarrow \ldots \rightarrow \text{Haski} (\text{Stream} \ \textit{res}) \).

Notice that the function which defines a node itself need not be inside the \textit{Haski} monad as \(\textit{Haski} (\text{Stream} a' \rightarrow \text{Stream} b' \rightarrow \ldots \rightarrow \text{Haski} (\text{Stream} \ \textit{res}) \).

¹Enabled by the RecursiveDo extension

²Enabled by the LambdaCase extension
... → Stream res). This allows for a more natural type to be as-
signed to a node, and for them to be called and used as regular
Haskell functions without any special combinators. For exam-
ple, we may map over a list of streams as mapM cache (requests::
[Stream Req]) to generate a list of responses, each correspond-
ing to a call of the node cache.

Compiling the node cache generates code which resembles
the following in C.

```
typedef unsigned short Enum;
struct cache_mem { Enum action; };
Enum cache_step (struct cache_mem * self, Enum req) {
  ...
  return resp;
}
```

We shall return to the specifics later, but for now we simply
observe that the node cache is compiled to a C function with
an additional argument self. This argument maintains the
internal state of the returned stream, which in this case is the
last-written action. Also note that both the types (Req and
Action) have been compiled to values of type Enum, which
represents a small positive integer—a simplifying assumption
made for all finitely enumerable types.

Primitive types and operators. The Haski compiler sup-
ports standard primitive types of fixed size such as Bool, Int,
etc.

```
instance HT Bool where ...
instance HT Int where ...
  -- similarly for other primitive types
```

The luxury of pattern-matching is limited to finitely enu-
merable types. Now suppose that we wish to adapt our cache
element to a read and write integers instead of actions. In-
tegers are not considered to be finitely enumerable for practical
reasons, which means that we cannot use a Haskell data type
with an integer in it for pattern matching. Instead, we must sep-

erate the request from the integer payload into two separate
streams as follows.

```
data Req = Read | Write

cache1 :: Stream Req → Stream Int → Haski (Stream Int)
cache1 = ...
```

To program streams whose types are not finitely enumerable,
we resort to the primitive operators supported by the
compiler. Haski supports a fixed set of operators that are rec-
ognized by the target environment. These operators are over-
loaded when possible (e.g., +, *, etc.) and provided separately
otherwise (e.g., gtE).

```
(+ ) :: Stream Int → Stream Int → Stream Int
(∗ ) :: Stream Int → Stream Int → Stream Int
gtE :: Stream Int → Stream Int → Stream Bool
...
```

Sampling operators. In addition to primitive operators,
Haski also supports sampling operators called when and merge
(from Lustre) for projecting and combining streams.

```
when :: FinEnum b → Stream a → (Stream b, b) → Stream a
merge :: FinEnum a → Stream a → (a → Stream b) → Stream b
```

The operator when allows us to project streams to slower ones:
the stream s_1 'when' (s_2, x) produces the value of s_1 only when
the value of s_2 is x. Operator merge, on the other hand, is a
restrictive version of match that requires the streams returned
by the function argument to be mutually complementary (i.e.,
at most one stream must produce a value at a time). As we
will see in the next section, merge is in fact used to implement
match.

Labeling primitives. Streams which contain sensitive in-
formation can be labeled with a sensitivity level. Labeled
streams are given the type LStream a, and may be understood
as streams wrapped in a secure container whose access is con-
trolled using specific primitives. A stream can be labeled and
unlabeled using the primitives label and unlabel respectively,
and the label of a stream can be queried using the labelOf
primitive.

```
label :: Label → Stream a → Haski (LStream a)
unlabel :: LStream a → Haski (Stream a)
labelOf :: LStream a → Haski Label
```

To understand the use of these primitives, let us implement a
new version of the cache node where the request and response
have been labeled. One reason to do this may be because we
wish to keep the actions of a user of our system confidential. To
implement the same behavior as before, we must now use the
labeling primitives explicitly to label and unlabel the streams.

```
secCache :: LStream Req → Haski (LStream Action)
secCache = node "secCache" $ λ req → do
  resp ← unlabel req ≡ cache
  ℓ ← labelOf req
  respℓ ← label ℓ resp
  return respℓ
```

The code above unlables the stream req as unlabel req. This
raises the sensitivity level of the program secCache to the label
of req (also known as tainting), which forces all subsequently
labeled streams (like respℓ) to be at least as sensitive as req.
The sensitivity level of the program is then used by an admin-
istrator to enforce security policies on the program during
compilation—as we shall see in Section 5.

3 Overview of Haski compiler

Haski at its core is an embedding of Lustre in Haskell with sup-
port for IFC. This means that Haski enables the use of Haskell
as a host language to write Lustre programs. A Lustre program,
much like Haski, is a system of stream bindings accompanied
by a collection of nodes invoked by them. Compiling a Haski
program first builds a Lustre program, and then compiles it to C—thus generating low-level code as in the examples of the previous section.

The compilation function \(\text{compile} : HT \ a \Rightarrow \text{Haski} \ (\text{Stream} \ a) \Rightarrow \text{IO} () \) compiles a Haski program and generates C code as a side-effect. Compilation builds a “main” node for the given program, which then acts as the point of invocation for the entire program. Note that the program is restricted to producing an output whose type satisfies the \(HT \) constraint. This means that, although the program may use any Haskell types, its result must be of a type supported by the target language. This restriction, in combination with similar type constraints on the combinators, ensures that the use of Haskell’s features that are not supported by the target environment (such as higher-order functions) are “evaluated away” during compilation time.

The compilation of a Haski program is achieved in two phases (see Figure 2): the Embedding phase constructs a list of Lustre nodes from a Haski program, and the Lustre phase then compiles the nodes to C functions. The first phase is implemented using a combination of deep and shallow embedding techniques, and consists of the compilation passes \(\text{building} \) and \(\text{node parsing} \). The second phase, on the other hand, transforms Lustre nodes to C functions via an intermediate object-oriented language called Obc. This phase involves a sequence of compilation passes such as clock inference, normalization and scheduling, that are well-known in Lustre compilers [Biernacki et al. 2008].

The Lustre phase is implemented using a modular clock-directed compilation approach that is well-studied and has even been formally verified [Auger et al. 2012; Bourke et al. 2017]. We implement the passes in this phase by repeatedly traversing the abstract syntax tree of Lustre nodes and annotating it with the result of each phase (following Najd and Jones [2017]). Our implementation of this phase is a straightforward adaptation of earlier work, and we do not discuss the details in this paper. Instead, we focus on the implementation details of the first phase, which also forms the basis for the IFC enforcement.

4 Haski as a Lustre Embedding

During the building pass, each line of a Haski program written using one of the combinators builds a corresponding intermediate definition under the hood of the Haski monad. These definitions are then parsed to construct a complete Lustre program in the node parsing pass. The purpose of this section is to describe the implementation of the building pass, and outline the action performed by the node parsing pass.

4.1 Building Recursive Definitions

The streams defined in the Haski monad are collected as a list of definitions. When run with an appropriate initial state, a Haski program produces a list of definitions which correspond to components of Lustre nodes. Definitions are denoted by the \text{Def} data type, and expressions by \text{Stream} (see Figure 3). A definition may be a simple binding that binds a variable with a stream expression (\text{Let}), or an argument (\text{Arg}) or result (\text{Res}) of a node call.

The program \text{alt} from Section 2 builds the following definitions under the hood of the Haski monad.

\begin{verbatim}
data HaskiSt = HaskiSt { defs :: [Def], ... }
type Haski = State HaskiSt
data Def where
 Let :: HT a \Rightarrow Var a \Rightarrow Stream a \Rightarrow Def
 Arg :: HT a \Rightarrow Node \Rightarrow Var a \Rightarrow Stream a \Rightarrow Def
 Res :: HT a \Rightarrow Node \Rightarrow Var a \Rightarrow Stream a \Rightarrow Def
data Stream a where
 Var :: HT a \Rightarrow Var a \Rightarrow Stream a
 Val :: HT a \Rightarrow a \Rightarrow Stream a
 Fby :: HT a \Rightarrow a \Rightarrow Stream a \Rightarrow Stream a
 When :: (FinEnum a) \Rightarrow Stream a
 \Rightarrow (Stream b, b) \Rightarrow Stream b
 Merge :: (FinEnum a) \Rightarrow Stream a
 \Rightarrow Vec (Stream b) (Size a) \Rightarrow Stream b
 -- plus primitive operators

class (Bounded a, Enum a) \Rightarrow FinEnum
 type a :: Nat

Figure 3. Types used to implement Haski
\end{verbatim}
where \(v_x = \text{Var} "x" \) and \(v_y = \text{Var} "y" \). We use the same variables names as in the original program for readability, but this can also be implemented automatically with some compiler support [Mista and Russo 2020].

Let us now turn to the implementation of combinators in the Haskell monad. The combinator \(\text{fby} \) is implemented using the \text{letDef} combinator as follows.

\[
\text{fby} :: HT a \Rightarrow a \rightarrow \text{Stream} a \rightarrow \text{Haski} (\text{Stream} a) \\
\text{fby} x s = \text{letDef} (\text{fby} x s)
\]

The combinator \text{letDef} is in turn implemented by adding a \text{Let} binding with a fresh variable name to the list of definitions in the Haski monad.

\[
\text{letDef} :: \text{Stream} a \rightarrow \text{Haski} (\text{Stream} a) \\
\text{letDef} s = \text{do} \\
\quad x \leftarrow \text{freshVar} \\
\quad \text{addDef} (\text{Let} x s) \\
\quad \text{return} (\text{Var} x)
\]

It returns the variable in place of the original stream expression, thus replacing any use of the expression in later definitions with this variable. Returning a variable is the key to enabling recursive definitions without sending the Haski compiler into an infinite loop.

As \(\text{fby} \), the implementation of \text{match} also builds definitions containing expressions under the hood, but is slightly more involved since \text{match} is derived from other expressions. We discuss this next.

4.2 Building Pattern Matching Definitions

The combinator \text{match} is overloaded in its function argument by the class \text{Streams} which has the following instances.

\[
\text{class Streams} b \text{ where} \\
\text{match} :: (\text{FinEnum} a) \Rightarrow \text{Stream} a \rightarrow (a \rightarrow b) \rightarrow \text{Haski} b
\]

\[
\text{instance Streams} (\text{Stream} b) \text{ where} \\
\text{instance} Streams b \Rightarrow \text{Streams} [b] \text{ where} ... \\
\text{instance} (\text{Streams} b, \text{Streams} c) \Rightarrow \text{Streams} (b, c) \text{ where} ...
\]

The overloading allows the \text{matching function} \(a \rightarrow b \) to return multiple streams, such as lists or tuples of streams. In this section, we shall discuss the implementation of the instance \text{Streams} (\text{Stream} b). We skip the remaining instances since their implementation is mostly mechanical component-wise applications of \text{match}.

The combinator \text{match} provides a convenient interface for defining streams using the more fine-grained sampling operators \text{When} and \text{Merge}. For instance, the stream \text{resp} in the \text{cache} example from earlier defined using \text{match on req}, builds the following definition.

\[
\text{Let} "\text{resp}" (\text{v}_{\text{req}} '\text{Merge}') [\\
\quad \text{v}_{\text{state}} '\text{When} (\text{v}_{\text{req}}. \text{Read}) \\
\quad , (\text{Val Left}) '\text{When} (\text{v}_{\text{req}}. \text{Write Left})
\]

\]

When can be understood as a projection of a stream using another stream: the expression \(\text{v}_{\text{state}} \) \('\text{When} (\text{v}_{\text{req}}. \text{Read}) \) produces the value of \(\text{v}_{\text{state}} \) when the value of \(\text{v}_{\text{req}} \) is \text{Read}, and nothing otherwise. In the \text{Merge} expression above, the vector (written using list notation) contains a stream for each possible value of \(\text{v}_{\text{req}} \). For every observed value of \(\text{v}_{\text{req}} \) \text{Merge} produces the value of the corresponding stream in the vector. The use of \text{When} ensures that the branches of \text{Merge} are mutually complementary, which, as mentioned earlier in Section 2, is a restriction that is required of \text{Merge}.

Now consider implementing the instance \text{Match} (\text{Stream} b), where \text{match} has the type \text{FinEnum} a \Rightarrow \text{Stream} a \rightarrow (a \rightarrow \text{Stream} b) \rightarrow \text{Haski} (\text{Stream} b). The matching function \(a \rightarrow \text{Stream} b \) is expected to return an expression for every possible value of type \(a \). To achieve the semantics of \text{match} illustrated above, we must implement \text{match} using \text{Merge}. But notice that \text{Merge} requires a \text{vector} argument of type \text{Vec} (\text{Stream} b) (\text{Size} a) instead of a function, where \text{Size} a denotes the number of values that inhabit the type \(a \). Using a vector forces a \text{Merge} expression to provide as many stream expressions as the number of values in the type \(a \) by construction, and thus enables the generated code to also inherit this property. This brings us to the question of implementing \text{match}: how must we construct a vector of streams from a function which returns them?

The solution to this problem is provided by the \text{FinEnum} class, which requires all its instances to be both bound and enumerable. Being bound and enumerable means that we could enumerate all the values of an instance type. Additionally, \text{FinEnum} is also finitely bound by the type family \text{Size}, which provides a type-level natural number of kind \text{Nat}. This enables us to enumerate the values as a vector of values, instead of a list of values. Let a function \text{enumerate} which does this be defined by the following class.

\[
\text{class FinEnum a} \Rightarrow \text{Enumerable} a (n \cdot \text{Nat}) \text{ where} \\
\text{enumerate} :: \text{Vec} a n
\]

Let us defer its implementation for the time being and simply assume that \text{enumerate} :: \text{Vec} a (\text{Size} a) returns all the values of type \(a \).

Since the domain of the matching function is finitely enumerable, we can use \text{enumerate} to generate all possible arguments to the function. Moreover, we can also apply the function to the enumerated arguments to extract all possible results of the function. Thus we have a way to extract all the stream expressions returned by the function! This behavior is implemented by the following function—named after “The Trick” in partial evaluation [Jones et al. 1993].

\[
\text{theTrick} :: \text{FinEnum} a \Rightarrow (a \rightarrow b) \rightarrow \text{Vec} b (\text{Size} a) \\
\text{theTrick} f = \text{fmap} f \text{ as} \\
\text{where as} :: \text{Vec} a (\text{Size} a) = \text{enumerate}
\]
We first construct the vector which contains the streams on which we compile a Haskell function which represents a Nat, which lucky for us, is exactly what we need!

As observed earlier, nodes are Haskell subprograms that abstract over streams. Nodes are given a more liberal type which allows them to be regular Haskell functions that need not be defined inside the Haski monad. But this creates a challenge: how do we compile a Haskell function which represents a Haski node to a data representation of a Lustre node? Moreover, we cannot have a simple Def constructor that corresponds to a node call, since Haski nodes are not called with a special combinator.

To solve this problem, we first note that result of a node is always in the Haski monad. When applied, if we “register” each argument of a node call as a separate definition in the Haski monad, then we could recover the complete call in a later pass (node parsing) which acts on the aggregated list of definitions. The idea is to build definitions for a node when it is called, such that the definitions retain sufficient information for the node parsing pass to identify both the node and its call. For instance, we wish to build the following definitions for the call prevAct ← cache (Val Entered).

```haskell
class Arg a where
    argDef :: Node → a → Haski a

class Res a where
    resDef :: Node → a → Haski a

instance Arg (Stream a) where ...
instance (Arg a, Arg b) ⇒ Arg (a, b) where ...
instance Res (Stream a) where ...
```

We first construct the vector which contains the streams on each branch of Merge in body :: Vec (Stream b) (Size a), and then insert the When expressions by zipping it (by application) with whens :: Vec (Stream b → Stream b) (Size a).

Recollect from earlier that the matching function is enforced to handle all the possible cases of its argument. We do not need any additional checks to enforce this behavior because this is already the case! If the function does not handle all possible cases, the invocation of the function theTrick by the compiler crashes with a Non-exhaustive patterns error—which, lucky for us, is exactly what we need!

It remains to implement enumerate, which is straightforward induction on the Nat parameter as follows.

```haskell
instance Enumeratable a 1 where
    enumerate = [ minBound ]

instance (Enum a, Enumeratable a n, n' ~ n + 1) ⇒ Enumeratable a n' where
    enumerate = succ (head ts) : ts
    where ts :: Vec a n = enumerate
```

The first value in the vector is constructed using minBound and the remaining elements are constructed by applying succ on the previous value. These functions are provided by the Bounded and Enum classes, respectively.

4.3 Building Nodes from Functions

As observed earlier, nodes are Haski subprograms that abstract over streams. Nodes are given a more liberal type which allows them to be regular Haskell functions that need not be defined inside the Haski monad. But this creates a challenge: how do we compile a Haskell function which represents a Haski node to a data representation of a Lustre node? Moreover, we cannot have a simple Def constructor that corresponds to a node call, since Haski nodes are not called with a special combinator.

To solve this problem, we first note that result of a node is always in the Haski monad. When applied, if we “register” each argument of a node call as a separate definition in the Haski monad, then we could recover the complete call in a later pass (node parsing) which acts on the aggregated list of definitions. The idea is to build definitions for a node when it is called, such that the definitions retain sufficient information for the node parsing pass to identify both the node and its call. For instance, we wish to build the following definitions for the call prevAct ← cache (Val Entered).

```haskell
instance Enumerable a n requires the "{- OVERLAPPING #-}") pragma.
```
Additionally, we are also given an instance

$$\text{instance } (\text{Arg } b, \text{Box } c) \Rightarrow \text{Box } (b \rightarrow c) \text{ where}$$

$$\text{node name } f = \text{curry } (\text{node name } (\text{uncurry } f))$$

In the base case instance \text{Box } (\text{Haski } b), the function \(f \) has the type \(a \rightarrow \text{Haski } b \). To box this function, we register the argument using \text{argDef} and call the function with the result of the registration. This substitutes the occurrences of the argument in the body of the function with the stream returned by \text{argDef}. Finally we register the result of the function using \text{resDef} and return the corresponding definition.

For the inductive case, observe that we need to box a function \(f :: a \rightarrow (b \rightarrow c) \), and the instance declaration provides us instances of \text{Arg } b and \text{Box } c as the induction hypotheses. Additionally, we are also given an instance \(\text{Arg } a \) by the declaration of the function \text{node}. The instances \text{Arg } a and \text{Arg } b yield an instance for \(\text{Arg } (a, b) \). Thus, using instances \(\text{Arg } (a, b) \) and \text{Box } c, we can box the function \(f \) by currying it, and then uncurrying back to return the desired result.

5 Information-Flow Control

Haskell is well-known for providing information-flow control (IFC) through security libraries. These libraries ensure that code written using their API does not reveal secrets to unauthorized parties. Many of the existing (monadic) security libraries (e.g., SecLib [Russo et al. 2008], LIO [Stefan et al. 2011b], MAC [Russo 2015], and HLIO [Buiras et al. 2015]) are designed for writing secure code. In this work, however, we consider a different scenario where we would like to extend an already existing DSL to provide IFC security while minimizing changes to existing code. Following this goal leads us to the design of an IFC enforcement where security checks are performed at code-generation time rather than at runtime (like in LIO) or type-checking (like in MAC). In this section, we give a brief overview of IFC and explain the design choices of our IFC enforcement for Haski.

5.1 Security lattices

IFC policies enforced by Haski are specified by a security lattice [Denning and Denning 1977], which defines a partial order between security levels (labels). These labels represent the sensitivity of program inputs and outputs and the order between them dictates which flows of information are allowed in a program. Concretely, we write \(\ell_1 \preceq \ell_2 \) if data at security level \(\ell_1 \) can flow to data at security level \(\ell_2 \) according to the security lattice. For example, the classic two-point lattice \(\mathcal{L} = \{ L, H \} \), \(\preceq \) classifies data as either public (L) or secret (H) and only prohibits sending secret inputs into public outputs, i.e., \(H \not\preceq L \).

5.2 Enforcement design

We design a coarse-grained IFC enforcement [Vassena et al. 2019], where developers only provide label annotations to security-relevant streams—rather than labeling every stream in a program. A labeled stream of type \(LStream \) is implemented by associating a stream expression with its label as follows.

```
data LStream a
  -- Manipulation of labeled streams
  labelOf :: LStream a → Label
  label :: Label → Stream a → Haski (LStream a)
  unlabel :: LStream a → Haski (Stream a)
  -- Current label
  getLabel :: Haski a → Haski Label
  -- Label creep avoidance
  toLabeled :: Haski (Stream a) → Haski (LStream a)
```

Figure 5. IFC interface for Haski

5.3 Implementing the labeling primitives

The labeling primitives create and read labeled streams in compliance with specific security rules to avoid information leakage [Bell and La Padula 1976].

The primitive \text{label} labels a stream with the given label and does not affect the floating label of the program. Its implementation ensures that the desired label \(\ell \) is at least the floating label of the program, i.e., \(\text{fl} \preceq \ell \), thus enforcing a no write-down

```haskell
r ← f x'
r' ← resDef name r
return r'
```

```
instance (Arg b, Box c) ⇒ Box (b → c) where
  node name f = curry (node name (uncurry f))
```

- Labeled streams
- `data LStream a`
 - Manipulation of labeled streams
 - `labelOf :: LStream a → Label`
 - `label :: Label → Stream a → Haski (LStream a)`
 - `unlabel :: LStream a → Haski (Stream a)`
 - Current label
 - `getLabel :: Haski a → Haski Label`
 - Label creep avoidance
 - `toLabeled :: Haski (Stream a) → Haski (LStream a)`

Figure 5. IFC interface for Haski
policy. Intuitively, \(\text{label}\) creates a labeled stream as long as the decision to do so depends on less sensitive data. For example, given \(\text{fl} = I\), the invocation \(\text{label } H s\) (for some \(s :: \text{Stream } a\)) is legal since \(\text{fl} \subseteq H\). This means that a program which has read sensitive data cannot write public information in an attempt to leak it. If this criteria is not met, \(\text{label}\) inserts an error using \(\text{fail}\) in the Haskell monad, thus crashing compilation.

The primitive \(\text{unlabel}\) acts as the dual of \(\text{label}\) and extracts the stream underlying a labeled stream. Unlike \(\text{label}\), however, \(\text{unlabel}\) never crashes compilation and always succeeds. Instead, the invocation \(\text{unlabel } s\) raises the floating label of the program to \(\text{fl} \sqcup t\).

Haski, as any other floating-label based IFC systems, suffers from the label creep problem. Unlabeling sensitive streams raises the floating label of the program, and hence a program which reads many sensitive streams risks raising its level to a point where it may not be able to produce any observable result. This problem is remedied using the \(\text{toLabeled}\) primitive, which addresses it by (i) creating a separate context where some sensitive computation can take place and (ii) restoring the original floating label afterwards.

The argument of \(\text{toLabeled}\) is a sensitive computation of type \(\text{Haski } (\text{Stream } a)\), that cannot return its result to the outer context—since that would be a leak. Instead, \(\text{toLabeled}\) wraps the result in a labeled stream using the floating label resulting from the execution of the sensitive computation. Unlike \(\text{unlabel}\), \(\text{toLabeled}\) produces a labeled stream of type \(\text{LStream } a\) and its invocation does not affect the floating label. An invocation of \(\text{toLabeled}\) never fails.

5.4 Running programs securely

DC-labels. Haski uses DC-labels [Stefan et al. 2011a], which is an expressive label format that can capture the security concerns of principals. DC-labels are pairs of confidentiality and integrity policies, noted \(<C, I>\) where \(C\) is the confidentiality policy and \(I\) is the integrity one. Both policies are positive propositional formulas in conjunctive normal form (CNF), where propositional constants represent principals. We assume that operations on formulas always reduce their results to CNF. For simplicity, we focus on confidentiality since the integrity part comes as a dual of it. Given two confidentiality policies \(C_1\) and \(C_2\), we interpret \(<C_1, I> \sqsubseteq <C_2, I>\) as:

\[
\begin{align*}
\langle C_1, I \rangle &\subseteq \langle C_2, I \rangle \iff (C_2 \Rightarrow C_1) \land (I \Rightarrow I) \\
\langle C_1, I \rangle \sqcup \langle C_2, I \rangle &\iff \langle C_1 \land C_2, I \land I \rangle \\
\langle C_1, I \rangle \sqcap \langle C_2, I \rangle &\iff \langle C_1 \lor C_2, I \lor I \rangle \\
\bot &\equiv \langle \text{True, False} \rangle \\
\top &\equiv \langle \text{False, True} \rangle
\end{align*}
\]

Figure 6. DC-labels semantics

\(C_2\) is at least as confidential as \(C_1\). For instance, \(<Halexa \lor Octavius, I> \subseteq <Octavius, I>\), which means that data readable by either Halexa or the Octavius is less confidential than data read only by the Octavius. In contrast, given two integrity policies \(I_1\) and \(I_2\), we interpret \(<C, I_1> \sqsubseteq <C, I_2>\) as: \(I_1\) is more trustworthy than \(I_2\), i.e., there are more principals taking responsibility for the data labeled with \(I_1\) than in \(I_2\). For instance, \(<C, Octavius \land Halexa> \subseteq <C, Halexa>\), which means that Halexa and the Octavius are jointly responsible for the data, which is more trustworthy than data only vouched by Octavius. Figure 6 presents the formalization of operations we will use in the rest of this section together with the definition of \(\sqcup\) and \(\sqcap\) in the security lattice. With DC-labels in place, we can associate the different components of our system to different principals, thus enabling them to impose different restrictions on the confidentiality and integrity of data.

Configuring security policies. A Haski program that returns a stream (labeled or not) can be run using the \(\text{runAs}\) function on behalf of a principal. This function is intended to be used by an administrator who compiles a Haski program and assigns the right privilege to it—we assume that the administrator is part of the trusted computing base. Function \(\text{runAs}\) is defined as follows:

\[
\text{class IsStream } f \text{ where}
\]

\[
\text{runAs}: \text{Haski } (f \ a) \rightarrow \text{Principal } \rightarrow \text{Haski } (\text{Label, Stream } a)
\]

The result of the \(\text{Haski } (f \ a)\) argument is overloaded in \(f\) to allow for both labeled and unlabeled streams to be returned. The \(\text{Principal}\) argument is used to set the initial floating label of the Haski computation and denotes the source of authority, i.e., the entity, that this program represents. For example, \(\text{runAs } \text{prog } “Halexa”\) runs a computation on behalf of Halexa with the DC-label \(<Halexa, Halexa>\). As a result, any stream that is labeled by \(\text{prog}\) will contain \(\text{Halexa}\) in both the confidentiality and integrity components of its label—which means that the stream is confidential to Halexa, and also that Halexa has contributed to its content.

The \(\text{runAs}\) function returns a label that corresponds to the final floating label of the computation joined with the label of its result, along with the result that it returns. The label is intended to be used by the administrator to enforce application-specific security policies. Observe that the result is an unlabeled stream. This is due to the fact that \(\text{runAs}\) is run by the administrator, i.e., a person that we trust, so there is no need to protect the resulting stream by labeling it.

We implement the \(\text{runAs}\) function using the \(\text{toLabeled}\) primitive. This is because \(\text{toLabeled}\) allows us to create a separate context for the program to be run in, and, as observed earlier, restores the floating label of the administrator prior to execution. Restoring the floating label of the administrator allows the administrator to run programs on behalf of various principals without getting tainted by them. Here is the...
type Status = Maybe Action

instance IsStream LStream where
 runAs prog princ = do
 (LStream ℓ res) ← toLabeled $ do
 setLabel (newDCLabel princ princ)
 prog
 return res

Function setLabel can only be used by the administrator and it is part of the trusted computed base, i.e., it is present in the IFC interface exposed to developers. The function newDCLabel creates a label from the given principal by using it for both the confidentiality and integrity components.

The instance for the case of labeled expressions is implemented in turn using the above instance by simply unlabeling the result.

instance IsStream LStream where
 runAs prog princ = runAs (prog ⊑ unlabeled) princ

The intended effect of this implementation is for the resulting label to be ℓ ⊔ ℓf, where ℓf is the floating label of prog at the end of its execution, and ℓ is the label of its result.

6 A Sample Application

In this section we illustrate the structure of the Halexap application and its security policy in Haski. The purpose of our application is to make a decision on opening a window, based on the current temperature in the house and the status of the user Octavius. Halexap is expected to open the window when the temperature in the room is over 30°C provided Octavius is at home. If Octavius is not home, however, Halexap must close the window regardless of the temperature. We consider the status of Octavius sensitive information and thus we require Halexap to confine the status and any information derived from it. That is, the status cannot be used to build streams less sensitive than the DC-label <Octavius, Octavius>.

We model Halexap as a node which accepts two streams as arguments (see Figure 7): one of type Stream Int for the temperature reading, and another of type LStream Status for a labeled stream of notifications which notify Halexap about the actions of Octavius. The notifications specify whether Octavius has left (Just Left), entered (Just Entered), or that there is no change in status (Nothing). In response, the node returns a stream of instructions denoted by Stream WindowOp which instructs whether the window should be opened (Open), closed (Close), or whether nothing should be done (Skip). In essence, we implement Halexap using the toLabeled primitive to unlabeled the labeled stream stat, thus ensuring that Halexap does not read its contents.

To understand the logic of the implementation, notice that a status stream stat need not contain any update in Octavius’s action since it may be Nothing. Hence it is up to us to compute the whereabouts of Octavius from the most recently observed action. We compute this in the stream recentAct as follows: if the current value of stat is Nothing then use the last available action of the user (given by pastAct), else simply use the action given by stat. The stream pastAct retains the last action of the user using the cache node from earlier. Finally, we define a decision stream by matching on the recentAct stream, which produces the desired result. The combinator ifte is simply a shortened version of a match expression which pattern matches on True and False.

An administrator who wishes to run Halexap must provide the appropriate input streams to the node and assign the right policies using the function runAs. One such implementation is the following.

instance LStream where
 runAs prog princ = do
 temp ← ...
 status ← ...
 status₁ ← label ℓo status
 (res, ℓ) ← runAs (halexa temp status₁) (principal "Halexap")
 unless (ℓ ⊔ (ℓo ⊔ ℓh)) (fail "Bad Halexap")
 return res

where
 ℓo = newDCLabel "Oct" "Oct"
 ℓh = newDCLabel "Halexap" "Halexap"

The security policy unless... in admin asserts that the resulting label must at most be a combination ⊔ of the labels of Octavius and Halexap. A simple case of obtaining the inputs would be to simply use fresh variables to define streams temp
and status, which are then later initiated by the runtime. For a more realistic system, however, we require a way to obtain streams from entities outside of a Haski program. We discuss one possibility to address this requirement via Bluetooth in the next section.

7 Reacting to Streams Outside of Haski
A typical IoT application communicates with several other applications and reacts to triggers which may originate from remote devices. To use Haski to build more realistic applications, it is important to enable streams to be provided by external sources. In this section, we consider the case of obtaining streams from remote devices via Bluetooth, which is a common means of communication in low power IoT devices. We manage to run Haski by creating a small C runtime around the code generated by Haski. In essence, the runtime obtains the temp and status streams from earlier via the Bluetooth Low-Energy (BLE) API of Zephyr OS on the nRF52840DK board using the techniques discussed here with some manual intervention.

7.1 Briefly about Bluetooth Low Energy
The Bluetooth component we target uses the BLE stack on Zephyr OS⁴, where the most common way that data flows through a BLE application is through a Generic Attribute Profile (GATT) server. Specifically, a device that has some data it wishes to make available to other devices will take the role of a GATT server. It will organise the data it has as characteristics that belong to services. As an example, a device might expose a biometrics service which in turn exposes the heart rate characteristic and the temperature characteristic.

A remote device that wishes to access or modify these values will take the role of a GATT client. A GATT client will initiate a connection to a GATT server, after which it scans for services and characteristics. Depending on the server configuration the client can update a remote characteristic, read a characteristic or subscribe to be notified about changes to a characteristic.

7.2 Preparing Haski for foreign streams
A Haski program works on streams, yet the APIs we want to use in Zephyr OS use commands and callback functions. These need to be connected somehow.

For example, the Bluetooth API contains a function called bt_gatt_subscribe that is used to register a callback function whenever a message is received from a specified device. In Haski, when we subscribe to a device, we do not provide a callback function, but we receive a Haski stream instead:

```
btGattSubscribe :: DeviceID → Haski (Stream a)
```

So, for example, in order to connect the Haski example from the previous section to the devices tempSensor and motionSensor, we can write the following code:

```
temp ← btGattSubscribe tempSensor
status ← btGattSubscribe motionSensor
...
```

The compilation process will then generate an invocation of the C function bt_gatt_subscribe in the generated code and registers a callback to the step function—which is generated for every node—of Haski. This means that the step function is called every time the devices tempSensor and motionSensor provide an update. Since the step function receives two arguments and the devices only produce one of them at a time, the step function is called with a default argument for the other. For example, the value of the status stream is Nothing when tempSensor provides an update.

7.3 The Haski GATT Client
The BLE code that ties together the Haski example with the remote temperature and the motion sensor assumes the role of a GATT client. The GATT client will scan for remote devices by calling the bt_le_scan_start BLE API function. The following function signatures have been simplified and rewritten in Haskell notation, and many less interesting functions have been omitted. The actual C versions of the API functions can be found in Appendix A.1.

```
bt_le_scan_start :: ScanParams
  → (RemoteDeviceInfo → Int)
  → Int
```

The second argument is a function that will be invoked when a device has been found. Once a remote device is found, a connection will be initiated with bt_conn_le_create.

```
bt_conn_le_create :: RemoteAddress
  → CreateParams
  → ConnectionParams
  → Connection
  → Int
```

When the connection has been established, we will scan it for the services it exposes. We expect to discover, e.g., the temperature service. To do this, we need to create some discovery parameters and then invoke bt_gatt_discover.

```
bt_gatt_discover :: Connection → DiscoverParams → Int
```

A subexpression of DiscoverParams is a function that will be called when a service have been discovered. This function will subscribe to a found service by invoking bt_gatt_subscribe. This will make sure that Haski is notified about any changes to the remote temperature value.

```
bt_gatt_subscribe :: Connection → SubscribeParams → Int
```

The SubscribeParams contain a function that will be called every time a notification is received. The function will be invoked with values describing the connection that issued the notification as well as the actual payload.

⁴https://www.zephyrproject.org/
Recollect from earlier that a node in Haski is compiled to a step function in C which is invoked in response to the availability of its arguments. Compiling Halexia from the previous section generates a corresponding step function halexia_step. This function has the following signature.

```
Enum halexia_step (struct halexia_mem * self, int temp, Enum motion)
```

In addition to this function, compiling Halexia also generates a struct halexia_mem, an instance of which is provided as the argument self to function halexia_step. This argument maintains the internal state of the stream returned by Halexia.

```
struct halexia_mem {...};
```

For every call of a node in a Haski program, an instance of such a struct is initialized globally before the first invocation, and passed as an argument to every subsequent invocation of the corresponding step function. For Halexia, initialization is done as follows.

```
/* Global definition */
struct halexia_mem * mem;
...
/* Evaluated by main */
mem = k_malloc (sizeof (struct halexia_mem));
```

Using these definitions we build a function that is registered as a callback to be invoked whenever the BLE application receives, for example, a new temperature reading (as shown below).

```
static u8_t notify_temperature (... const void * data ) {
  ...
  int * temperature = (int*) data ;
  ...
  halexia_step (mem, *temperature, NOTHING);
  ...
}
```

We invoke the function halexia_step with its internal memory mem, which stores the internal state of the node. Notice that we pass NOTHING, a representation of the corresponding Haskell value, for the status stream here. This is because the function notify_temperature is invoked in response to the temperature sensor, which does not provide a status update. A similar callback function must be registered for the status stream by invoking halexia_step with a default temperature reading.

We emphasize that the small C runtime we implemented here is tailored to BLE and it requires some manual intervention to make the coupling between the generated code by Haski and Zephyr OS’s API—we leave as future work to devise an automatic mechanism to do that.

7.4 Going Forward

The attentive reader might have paused to think while reading the previous section. The previous section describes how we compile a synchronous programming language to a target which uses callbacks and events instead of streams. It is not immediately obvious how to do this. This discrepancy leads to the need for manual intervention when connecting the generated code to the outside world via BLE.

There are a few questions that need to be addressed in future work. How is a continuous stream created from the sporadic events given to a callback function by the outside world? How do you compile a Haski node and dynamically register and unregister it as a callback?

We believe nicely generalising this is possible, and leave this and more questions as future work.

8 Related Work

Synchronous languages.

The seminal work of Lustre [Caspi et al. 1987] (sometimes called “classical Lustre”) shows how a declarative synchronous programming style can benefit from memory and computational time bounds. Lustre’s ideas have been applied in a wide-range of scenarios ranging from hardware design (e.g., [Bjesse et al. 1998]) to real-time reactive systems (e.g., [Qian et al. 2015]).

Haski is based on a variation of classical Lustre from Bieracki et al. [2008], the semantics of which has been formalized and verified by Auger et al. [2012] and Bourke et al. [2017]. The main difference between classical Lustre and the variant used by Haski is the absence of the current operator and the addition of the merge and reset operators. For a more detailed discussion on the differences, see Bourke et al. [2017]. Haski does not (yet) implement the reset operator.

A notable implementation of Lustre that is closely related to ours is Lucid Synchrone [Caspi et al. 2008]. Lucid Synchrone uses OCaml as the host language and allows a rich programming interface with many higher-order features of OCaml. Unlike Haski, it allows pattern matching on complex data types (e.g., streams of functions) that are not limited to finitely enumerable types. Naturally, the richer features offered by Lucid Synchrone also place higher demands from the runtime system, such as the need for a garbage collector. Haski, on the other hand, targets memory constrained IoT devices and thus strives to keep the runtime system minimal. The code generated by compiling a Haski program can be executed with a fixed amount of memory and does not require garbage collection.

Functional Reactive Programming. Functional Reactive Programming (FRP) [Elliott and Hudak 1997] is a programming style for programming asynchronous reactive systems. Unlike Lustre, it has the convenience of incorporating higher-order functions at the price of possibly introducing memory leaks—as noticed and addressed in subsequent work (e.g., [Bahr et al. 2019; Courtney et al. 2003; van der Ploeg and Claessen 2015]).
Haski does not support higher-order functions as first class values, but enables developers to utilize them to build first-order Lustre programs. The staged programming approach ensures that all higher-order functions are eliminated at compile time, thus removing the need to address space leaks which may be caused by them.

Code generation for C. We are not the first ones to propose an eDSL in Haskell for generating memory safe C code. Closest to our work is Copilot [Pike et al. 2013], an eDSL for stream-based programming for avionics. While Copilot provides similar guarantees on the generated code w.r.t. constant space and execution time, Haski presents a different programming experience (e.g., a monadic interface) as well as IFC security features. Haskino [Grebe and Gill 2016] is an eDSL to write programs to be run in an Arduino board while supporting a light-weight notion of threads. Like Haski, Haskino deploys the generated-C code into a custom made runtime. Feldspar [Axelsson et al. 2010] is a DSL for describing digital signal processing algorithms in Haskell and generate C code. Ivory [Elliott et al. 2015] is an advanced DSL for writing memory-safe C code within Haskell. It uses a simple notion of memory regions and also provides access control security checks to restrict side-effects in the generated C-code.

Language-based security for IoT. Pyronia [Melara et al. 2019] provides access control and IFC for embedded devices written in Python. Pyronia runs under a custom-made runtime responsible to perform system call interception, call stack inspection, and memory protection. Such modification are required to ensure that Python, where by design data is public, can safely execute and interact with C programs. In contrast, Haskell provides good abstractions to deliver a pure language-based IFC solution [Russo 2015; Russo et al. 2008; Stefan et al. 2011b], which enables Haski to not require special runtimes and run on commodity IoT OSes. SainT [Celik et al. 2018] delivers an static IFC analysis for commodity SmartThings apps. SainT builds an intermediate representation for Groovy (object-oriented) SmartThings programs, where IFC checks are carried out. SainT targets legacy code while Haski provides security by construction using a coarse-grained IFC approach. Hence, SainT needs to extend the semantics of Groovy commands to reason about IFC. Instead, Haski provides modular security types (LStream) and primitives (e.g., label and unlabel) atop of our synchronous language. Velox VM [Tsiftes and Voigt 2018] provides a Scheme virtual machine for constrained devices. Every app run by the VM has an associated access control policy file, which is used to restrict apps from accessing sensitive data and resource usage. As future work, Haski could integrate resource usage control as done by Velox VM.

Haskell security libraries. The closest Haskell IFC libraries to our approach are LIO [Russo 2015], HLIO [Buiras et al. 2015], and MAC [Stefan et al. 2011b]. Our approach to enforce IFC at compile-time leads us to a new design space, where our API is a simplified version of the LIO’s one due to executing the analysis at compile-time. More specifically, LIO takes an extra parameter in toLabeled to avoid leakage via labels [Buiras et al. 2014], which Haski does not suffer from by taking an static (compile-time) approach. Compared with HLIO and MAC, Haski is static but does not rely on Haskell’s type-system for security checks but rather on the Haski compiler. Generally speaking, Haski’s IFC API is a static, simplified, version of LIO’s API while not going all the way to HLIO or MAC—it is something in between.

9 Final Remarks

We have presented Haski, a Haskell eDSL for writing software in embedded devices. Haski generates C code with memory consumption guarantees as well as information-flow security thanks to many program analyses realized by the compiler. We showcase that Haski programs can be easily integrated with a realistic runtime like the BLE in Zephyr OS. We expect this work to be a foundation to build IoT applications that leverage, not only BLE, but most of the underlying embedded OS functionality while providing security properties. Furthermore, we leave as future work to adapt our eDSL to allow users to be “in the loop” when relaxing IFC restrictions, e.g., to enable opening windows when the user is not home or to allow sending occupancy information to a security monitor. The Haski core development (excluding the BLE runtime) currently consists of 2621 lines of Haskell code.

Acknowledgments

This work was funded by the Swedish Foundation for Strategic Research (SSF) under the project Octopi (Ref. RIT17-0023) and by the Swedish research agency Vetenskapsrådet under the project SyTeC (Ref. 2016-06204). We would like to thank Nordic Semiconductor for providing us with the nRF52840DK boards, and the anonymous reviewers at Haskell ’20 for their feedback on this paper.

A Appendix

A.1 BLE API function prototypes in C

For brevity, the following API signatures were rendered as Haskell’s type signatures in the paper. Below, we show the complete Zephyr OS’ API signatures for the methods described in the paper.

```c
int bt_le_scan_start (const struct bt_le_scan_param * param,
                     bt_le_scan_cb_t device_found)

int bt_conn_le_create (const bt_addr_le_t * peer,
                        const struct bt_conn_le_create_param * create_param,
                        const struct bt_le_conn_para * conn_param,
                        struct bt_conn * conn)

int bt_gatt_discover (struct bt_conn * conn,
```

5https://github.com/OctopiChalmers/haski
struct bt_gatt_discover_params * params)
int bt_gatt_subscribe (struct bt_conn * conn,
 struct bt_gatt_subscribe_params * params)

References

Nachiappan Valliappan, Robert Krook, Alejandro Russo, and Koen Claessen

