Be My Guest

Nachiappan V.

Part I

"Simplicity is a blockchain programming language that is so simple, it fits on a t-shirt."

- Russel O'Connor, Blockstream

Simplicity and Michelson

Philip Wadler

University of Edinburgh and IOHK **Simplicity**

Authors

"Simplicity is still too simple"

Towards Adding Variety to Simplicity

Authors and affiliations

Nachiappan Valliappan, Solène Mirliaz, Elisabet Lobo Vesga, Alejandro Russo 🖂

"Despite [being] capable of expressing non-trivial contracts, it can be very cumbersome to actually write one using its minimal constructs."

Towards Adding Variety to Simplicity

5 Adding Functions to Simplicity

In this section, we extend the Simplicity core language with user-defined func-

 $loop :: Types \ a \Rightarrow Simpl \ a \ a \rightarrow SNat \rightarrow Simpl \ a \ a$

new features!

categorical justification

Fig. 9. Exponentials in BCCCs

Towards Adding Variety to Simplicity 429

Read Stack $[\dots \underset{\uparrow}{11} \dots]$	Write Stack [??????] []	List of exponentials 0000 ([<i>NewFrame</i> , <i>Write</i> 1,], [0010])
run (PutClosure [Read,] 2 4)		
Read Stack	Write Stack	Closures list 0000 ([NewFrame, Write 1,], [0010])
[]	[]	0001 ([<i>Read</i> ,], [11])

Fig. 12. Executing *PutClosure* in the SBM

Compiling to Categories

CONAL ELLIOTT, Target, USA

Franslation without Closure

a categories are cartesian but not *cartesian closed*, e.g., vector spaces with linear maps. M In rules for converting to CCC form rely on closure, which poses a problem for non-clo

Some categories are cartesian but not *cartesian closed*, e.g., vector spaces with linear maps. Most of the rules for converting to CCC form rely on closure, which poses a problem for non-closed categories. If, however, the *overall* function being converted does not involve functions in its domain or codomain, then the corresponding closure-dependent CCC form can often (or perhaps always) be converted to a form free of the *Closed* operations (*apply, curry*, and *uncurry*)—assuming that none of the primitive operations (*addC*, *mulC*, *eq*, etc) involve exponentials in their types

```
Vf. uncurry (curry f) = f

(g. curry (uncurry g) = g

(apply ◦ (curry (g ◦ exr) △ f) = g
```

ategory change, although homomorphism application is fairly simple and inexpensive.) These losure-eliminating rules include the following:

Higher-order program $\{\mathbb{b}, 1, *, 0, +, \Rightarrow\}$

First-order machine $\{b, 1, *, 0, +\}$

$$\mathbf{id}: a \longrightarrow a \qquad \qquad \frac{f: b \longrightarrow c \qquad g: a \longrightarrow b}{f \circ g: a \longrightarrow c}$$

$$\frac{f: a \longrightarrow b \qquad g: a \longrightarrow c}{\text{pair } f \ g: a \longrightarrow (b * c)}$$

 $\pi_1: (a * b) \longrightarrow a \qquad \qquad \pi_2: (a * b) \longrightarrow b$

BCC: Function (or "exponential") combinators

$$\frac{f:(a*b)\longrightarrow c}{\Lambda f:a\longrightarrow (b\Rightarrow c)} \qquad \text{apply}:((a\Rightarrow b)*a)\longrightarrow b$$

Yes!

Exponential Elimination for Bicartesian Closed Categorical Combinators

Nachiappan Valliappan Chalmers University Sweden nacval@chalmers.se

ABSTRACT

Categorical combinators offer a simpler alternative to typed lambda calculi for static analysis and implementation. Since categorical combinators are accompanied by a rich set of conversion rules Alejandro Russo Chalmers University Sweden russo@chalmers.se

[Cousineau et al. 1987; Lafont 1988]. Abadi et al. [1991] observe that categorical combinators "make it easy to derive machines for the λ -calculus and to show the correctness of these machines". This ease is attributed to the absence of variables in combinators, which

and : $(bool * bool) \longrightarrow bool$ Λ and : $bool \rightarrow (bool \Rightarrow bool)$

 $\begin{array}{l} \text{norm} \\ \text{apply} \circ \text{pair } (\Lambda \text{ and}) \text{ true} & \longrightarrow \text{ and } \circ (\text{pair true id}) \\ \vdots \text{ bool} \rightarrow \text{ bool} & \vdots \text{ bool} \rightarrow \text{ bool} \end{array}$

by rewriting?

Rewriting is difficult!

 $\{\mathbb{b}, 1, *, 0, +, \Rightarrow\}$

No well-understood rewriting algorithms for combinators Rewriting techniques for empty and sum types are daunting Rewrite no more, piggyback!

Normalization by Evaluation

eval:
$$(a \longrightarrow b) \rightarrow (\llbracket a \rrbracket \rightarrow \llbracket b \rrbracket)$$

reify: $(\llbracket a \rrbracket \rightarrow \llbracket b \rrbracket) \rightarrow (a \longrightarrow_1 b)$

norm :
$$(a \longrightarrow b) \rightarrow (a \longrightarrow_1 b)$$

norm $t = \text{reify} (\text{eval } t)$

Normalization by Evaluation

Stories told and lessons learned

Proven correct, shown applicable

correct :
$$(f : a \longrightarrow b) \rightarrow \text{norm } f \approx f$$

defunc : Simpl $a \ b \rightarrow \text{Simpl}_1 \ a \ b$

Insight: Target must be distributive!

distr :
$$a * (b + c) \longrightarrow_1 (a * b) + (a * c)$$

- @ Mentions & reactions
- □ Saved items
- : More
- ▶ Channels
- Direct messages
- 🖳 algehed
- Apps
- + Add apps

curiosity question:

is it possible to prove noninterference using NBE?

Message algehed

5

Aa @ \odot U ->

Part II

What is noninterference, anyway?

$$\frac{\Gamma \vdash t : a}{\Gamma \vdash \operatorname{return} t : S \ \ell \ a}$$

label values

$$\begin{array}{c} \text{bind labeled values} \quad \left\{ \begin{array}{cc} \frac{\Gamma \vdash m : S \ \ell \ a & \Gamma \vdash f : a \Rightarrow S \ \ell \ b \\ \hline \Gamma \vdash m \gg f : S \ \ell \ b \end{array} \right. \\ \hline \frac{\Gamma \vdash m : S \ \ell \ a & \ell \ \sqsubseteq \ell'}{\Gamma \vdash \min \ m : S \ \ell' \ a} \end{array} \right\} \quad \text{relabel values}$$

How should you **prove** noninterference?

f : S H a -> S L bool

- f (sa₁) ----> return true
- f (sa₂) \dashrightarrow return false

...

- Operational Semantics
- Denotational Semantics
- Parametricity
- Normalization!

What does normalization have to do with noninterference?

Inspect **f**: S H a -> S L bool

• f sa = return (not false)

• f sa = ...

infinitely many arbitrarily complex possibilities...

Inspect **f**: S H a -> S L bool

...that always normalize to a constant!

Idea: Normalize programs, and then inspect them. If Sec guarantees noninterference, then programs of form secret → public must be constant.

Simple Noninterference by Normalization

Carlos Tomé Cortiñas* Chalmers University of Technology carlos.tome@chalmers.se

Abstract

Information-flow control (IFC) languages ensure programs preserve the confidentiality of sensitive data. *Noninterference*, the desired security property of such languages. states Nachiappan Valliappan* Chalmers University of Technology nacval@chalmers.se

sensitive data is often proved using a property called *noninterference*. Noninterference ensures that an observer authorized to view the output of a program (pessimistically called the attacker) cannot infer any sensitive data handled by it.

Normalize how? By Evaluation!

$$\{\mathbb{b}, 1, *, 0, +, \Rightarrow, S \ \ell\}$$

reuse previous work!

eval:
$$(\Gamma \vdash a) \rightarrow (\llbracket \Gamma \rrbracket \rightarrow \llbracket a \rrbracket)$$

reify: $(\llbracket \Gamma \rrbracket \rightarrow \llbracket a \rrbracket) \rightarrow (\Gamma \vdash_{\mathrm{nf}} a)$

norm : $(\Gamma \vdash a) \rightarrow (\Gamma \vdash_{\mathrm{nf}} a)$ norm $t = \mathrm{reify} \ (\mathrm{eval} \ t)$

Stories told and lessons learned

Proven correct and secure

correct :
$$(\Gamma \vdash t : a) \to \text{norm } t \approx t$$

secure : $(\Gamma_{\ell} \vdash t : S \ \ell' \ \tau) \to \ell \sqsubseteq \ell' \ \lor \text{ (IsConst } t)$

Insight: Type-safe noninterference can be proved syntactically!

Normalization isn't the only opportunity, compilation too!

Part III

Haski: DSL for programming streams based on Lustre

 $\begin{array}{ll} val \ x & construct \ constant \ stream \ x, \ x, \ x, \ x, \dots \\ fby \ x \ s & construct \ a \ stream \ x, \ s_1, \ s_2, \ s_3, \dots \\ match \ s \ \{ & pattern-match \ over \ s \ and \ return \ b_i \ for \ a_i \\ a_1 \rightarrow b_1 \end{array}$

 $a_n \to b_2$ }

. . .

...

Free parsing and type-checking!

code_gen :: Haski (Stream a) -> Code

Compiling Recursive definitions

```
nats :: Haski (Stream Int)
nats = mdo
  x <- 0 `fby` x + 1
  return x
fib :: Haski (Stream Int)
fib = mdo
  x <- 0 `fby` y
  y < -1  fby (x + y)
  return x
```

Compiling Pattern matching

```
data Loc = In | Out
flipper :: Stream Loc -> Haski (Stream Loc)
flipper loc = mdo
    loc' <- loc `match` \case
        In -> Out
        Out -> In
    return loc'
```

case In: loc' = Out case Out: loc' = In Compiling Pattern matching using "The Trick"

Enumerate $[a_0, a_1, a_2, ..., a_n]$

map with (a -> Stream b)

Enabling Information-Flow Control (IFC)

Labeled Stream sec flipper :: LStream Loc -> Haski (LStream Loc)

label (High :: Label) (loc :: Stream Loc) :: LStream Loc

unlabel (sloc :: LStream Loc)

:: Haski (Stream Loc)

```
sec_flipper :: LStream Loc -> Haski (LStream Loc)
sec_flipper sloc = mdo
loc <- unlabel sloc
loc' <- flipper loc
sloc' <- label High loc'
return sloc'</pre>
```

Static IFC, but not using types!

- Labels are *static values*, not types

```
i.e., High :: Label, not High :: *
```

- IFC primitives are "compiled away"

i.e., sec_flipper ≈ flipper, if there's no violation

Using Haski for programming IoT devices

Towards Secure IoT Programming in Haskell

Nachiappan Valliappan Chalmers University of Technology Gothenburg, Sweden nacval@chalmers.se

Alejandro Russo Chalmers University of Technology Gothenburg, Sweden russo@chalmers.se

Abstract

IoT applications are often developed in programming languages with low-level abstractions, where a seemingly innocent mistake might lead to severe security vulnerabilities. Current IoT development tools make it hard to identify these vulnerabilities as they do not provide end-to-end guarantees about how data flows *within and between* appliances. In this work we present Haski, an embedded domain specific language Robert Krook Chalmers University of Technology Gothenburg, Sweden krookr@chalmers.se

Koen Claessen Chalmers University of Technology Gothenburg, Sweden koen@chalmers.se

1 Introduction

The Internet of Things (IoT) conceives a future where "things" (embedded electronics) can be interconnected. While a compelling vision, recent events have demonstrated the *high vulnerability* of IoT (e.g., [Bertino and Islam 2017; Fernandes et al. 2016; Schuster et al. 2018; Wang et al. 2018]). Hence, it has become important to develop security solutions which address the concerns of unauthorized access to data and privacy loss.

Stories told and lessons learned

Insight: eDSLs are amenable to use of partial evaluation techniques

