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"Simplicity is a blockchain programming language that is so simple, it fits on a t-shirt.”

- Russel O'Connor, Blockstream

2017
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“Simplicity is still too simple”

“Despite [being] capable of expressing non-trivial 
contracts,  it can be very cumbersome to actually 

write one using its minimal constructs.”

2018
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new features!

categorical 
justification
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READ WRITE
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… …

?

(concise, expressive)

(simple, lean)
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BCC: Basic combinators
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BCC: Function (or “exponential”) combinators
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?

Yes!
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by rewriting?
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No well-understood 
rewriting algorithms for 

combinators

Rewriting techniques 
for empty and sum 
types are daunting

Rewriting is difficult!
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Rewrite no more, piggyback!

Normalization by Evaluation
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Normalization by Evaluation

17



Stories told and lessons learned

Insight: Target must be distributive!

Proven correct, shown applicable
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What is noninterference, anyway?

secret

public

22



Sec: Model of 

label values

bind labeled values

relabel values

23



f (sa1) ⟿ return true

f (sa2) ⟿ return false

…

- Operational Semantics
- Denotational Semantics
- Parametricity
- Normalization!

How should you prove noninterference?

f : S H a -> S L bool
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What does normalization have to do with noninterference?



Inspect f : S H a -> S L bool

◦ f sa = return (not false)

◦ f sa = snd (sa >>= (\x . return x)
, return false)

◦ f sa = … 

infinitely many arbitrarily complex possibilities…
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Inspect f : S H a -> S L bool

◦ f sa = return (not false)

◦ f sa = snd (sa >>= (\x . return x)
, return false)

◦ f sa = … 

…that always normalize to a constant!

return true

return false

return true/false
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Idea: Normalize programs, and then inspect them.
If Sec guarantees noninterference, then programs of 

form secret à public must be constant.
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Normalize how? By Evaluation!

reuse previous work!
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Stories told and lessons learned

Insight: Type-safe noninterference can be proved syntactically!

Proven correct and secure
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Normalization isn’t the only 
opportunity, compilation too!
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Haski

Part III
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Haski: DSL for programming streams based on Lustre

construct constant stream x, x, x, x,…

construct a stream x, s1 , s2 , s3 ,…

pattern-match over s and return bi for ai
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Embedding Haski in Haskell

val :: a -> Haski (Stream a)

fby :: a -> Stream a -> Haski (Stream a)

match :: … => Stream a -> (a -> Stream b) 

-> Haski (Stream b)

…

code_gen :: Haski (Stream a) -> Code

Free parsing and type-checking!
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Compiling Recursive definitions

nats :: Haski (Stream Int)
nats = mdo

x <- 0 `fby` x + 1
return x

35

fib :: Haski (Stream Int)
fib = mdo

x <- 0 `fby` y
y <- 1 `fby` (x + y)
return x



Compiling Pattern matching

data Loc = In | Out

flipper :: Stream Loc -> Haski (Stream Loc)
flipper loc = mdo

loc’ <- loc `match` \case
In -> Out
Out -> In

return loc’ switch loc {
case In:      loc’ = Out
case Out:   loc’ = In

}
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Compiling Pattern matching using “The Trick”

code_gen’ :: Stream a -> Code

match :: FinEnum a
=> Stream a -> (a -> Stream b) 
-> Haski (Stream b)

Require type ‘a’ to be finitely enumerable
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Enumerate [a0, a1, a2, ..., an] map with (a -> Stream b)



Enabling Information-Flow Control (IFC)

sec_flipper :: LStream Loc -> Haski (LStream Loc)

Labeled Stream
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IFC primitives

label (High :: Label) (loc :: Stream Loc) 

:: LStream Loc

unlabel (sloc :: LStream Loc) 

:: Haski (Stream Loc)

…
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Programming with IFC primitives

sec_flipper :: LStream Loc -> Haski (LStream Loc)
sec_flipper sloc = mdo

loc <- unlabel sloc
loc’ <- flipper loc
sloc’ <- label High loc’
return sloc’

40

checked during compilation



Static IFC, but not using types! 

- Labels are static values, not types

i.e., High :: Label, not High :: *

- IFC primitives are “compiled away”

i.e., sec_flipper ≈ flipper, if there’s no violation
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Using Haski for programming IoT devices
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Stories told and lessons learned

43

(microcontroller)(RTOS with a C API)

Haski on +

Insight: eDSLs are amenable to use of partial evaluation techniques
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