
Be My Guest

Nachiappan V.

Guest

Host

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

BCC Sec Haski

Normalization Compilation

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

BCC

Part I

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

"Simplicity is a blockchain programming language that is so simple, it fits on a t-shirt.”

- Russel O'Connor, Blockstream

2017

5

“Simplicity is still too simple”

“Despite [being] capable of expressing non-trivial
contracts, it can be very cumbersome to actually

write one using its minimal constructs.”

2018

6

new features!

categorical
justification

7

8

2017

9

1
READ WRITE
1 0 0 1 0 1 1 1 0 1 0 0

… …

?

(concise, expressive)

(simple, lean)

10

BCC: Basic combinators

11

BCC: Function (or “exponential”) combinators

12

?

Yes!

13

by rewriting?

14

No well-understood
rewriting algorithms for

combinators

Rewriting techniques
for empty and sum
types are daunting

Rewriting is difficult!

15

Rewrite no more, piggyback!

Normalization by Evaluation

16

Normalization by Evaluation

17

Stories told and lessons learned

Insight: Target must be distributive!

Proven correct, shown applicable

18

This Photo is licensed under CC BY-SA

Normalization
by Evaluation

2019

19

https://commons.wikimedia.org/wiki/File:An_interesting_talk.png
https://creativecommons.org/licenses/by-sa/3.0/

20

Sec

Part II

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

What is noninterference, anyway?

secret

public

22

Sec: Model of

label values

bind labeled values

relabel values

23

f (sa1) ⟿ return true

f (sa2) ⟿ return false

…

- Operational Semantics
- Denotational Semantics
- Parametricity
- Normalization!

How should you prove noninterference?

f : S H a -> S L bool

24

What does normalization have to do with noninterference?

Inspect f : S H a -> S L bool

◦ f sa = return (not false)

◦ f sa = snd (sa >>= (\x . return x)
, return false)

◦ f sa = …

infinitely many arbitrarily complex possibilities…

26

Inspect f : S H a -> S L bool

◦ f sa = return (not false)

◦ f sa = snd (sa >>= (\x . return x)
, return false)

◦ f sa = …

…that always normalize to a constant!

return true

return false

return true/false

27

Idea: Normalize programs, and then inspect them.
If Sec guarantees noninterference, then programs of

form secret à public must be constant.

28

Normalize how? By Evaluation!

reuse previous work!

29

Stories told and lessons learned

Insight: Type-safe noninterference can be proved syntactically!

Proven correct and secure

30

Normalization isn’t the only
opportunity, compilation too!

31

Haski

Part III

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

Haski: DSL for programming streams based on Lustre

construct constant stream x, x, x, x,…

construct a stream x, s1 , s2 , s3 ,…

pattern-match over s and return bi for ai

33

Embedding Haski in Haskell

val :: a -> Haski (Stream a)

fby :: a -> Stream a -> Haski (Stream a)

match :: … => Stream a -> (a -> Stream b)

-> Haski (Stream b)

…

code_gen :: Haski (Stream a) -> Code

Free parsing and type-checking!

34

Compiling Recursive definitions

nats :: Haski (Stream Int)
nats = mdo

x <- 0 `fby` x + 1
return x

35

fib :: Haski (Stream Int)
fib = mdo

x <- 0 `fby` y
y <- 1 `fby` (x + y)
return x

Compiling Pattern matching

data Loc = In | Out

flipper :: Stream Loc -> Haski (Stream Loc)
flipper loc = mdo

loc’ <- loc `match` \case
In -> Out
Out -> In

return loc’ switch loc {
case In: loc’ = Out
case Out: loc’ = In

}

36

Compiling Pattern matching using “The Trick”

code_gen’ :: Stream a -> Code

match :: FinEnum a
=> Stream a -> (a -> Stream b)
-> Haski (Stream b)

Require type ‘a’ to be finitely enumerable

37

Enumerate [a0, a1, a2, ..., an] map with (a -> Stream b)

Enabling Information-Flow Control (IFC)

sec_flipper :: LStream Loc -> Haski (LStream Loc)

Labeled Stream

38

IFC primitives

label (High :: Label) (loc :: Stream Loc)

:: LStream Loc

unlabel (sloc :: LStream Loc)

:: Haski (Stream Loc)

…

39

Programming with IFC primitives

sec_flipper :: LStream Loc -> Haski (LStream Loc)
sec_flipper sloc = mdo

loc <- unlabel sloc
loc’ <- flipper loc
sloc’ <- label High loc’
return sloc’

40

checked during compilation

Static IFC, but not using types!

- Labels are static values, not types

i.e., High :: Label, not High :: *

- IFC primitives are “compiled away”

i.e., sec_flipper ≈ flipper, if there’s no violation

41

Using Haski for programming IoT devices

42

Stories told and lessons learned

43

(microcontroller)(RTOS with a C API)

Haski on +

Insight: eDSLs are amenable to use of partial evaluation techniques

BCC Sec Haski

Normalization Compilation

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

