Be My Guest

Nachiappan V.

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

Normalization Compilation

¢
»=Haskell

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

I Agda

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

3¢ Simplicity

$:Ar8 1:B-C
compst:A-C

tiA-B tiA-C
init: AFB+C inkt:A-6+C

5:AXC-D t:BxCHD s:AFB 1:AFC
casest: (A+B)xCrD parst AFBxC

1:AFC t:8rC
Wet AxBFC dopt AxBFC

fcomps](a) = []([s](a)
funit](a) == {
[inji f](a) == o*([f](a))
[inir](8) := o"([1)(a)
[case st](0*(a),) := [s](a, ¢}
[case st](a"(b),c) = [t](b,c)
[pair s f](a) == ([s](a), [f](a))
[take t){a, b} -~ [t](a)
[drop t]{a, b) -= [t](b)

2018

Simplicity and Michelson

Philip Wadler
University of Edinburgh and IOHK

Simplici . e e, . . .
ety “Simplicity is still too simple”

Towards Adding Variety to Simplicity

Authors Authors and affiliations

Nachiappan Valliappan, Soléne Mirliaz, Elisabet Lobo Vesga, Alejandro Russo

“Despite [being] capable of expressing non-trivial
contracts, it can be very cumbersome to actually
write one using its minimal constructs.”

Towards Adding Variety to Simplicity

5 Adding Functions to Simplicity jg
In this section, we extend the Simplicity core language with user-defined func-
loop :: Types a = Simpl a a — SNat — Simpl a a - newfeatures.’
AxB f > O
(curry(f) o fst, snd) eval — Categorical
(B = C) % B justification
Fig. 9. Exponentials in BCCCs

Towards Adding Variety to Simplicity 429

Read Stack Write Stack List of exponentials
7777 0000 ([NewFrame, Write 1,...],[0010])

lfrun (PutClosure [Read,...] 2 4)

Read Stack Write Stack Closures list
[%1 . [... 0001}7...] 0000 ([NewFrame, Write 1,...],[0010])

[...] [...] 0001 ([Read,...],[11])

Fig. 12. Executing PutClosure in the SBM

20177
Compiling to Categories

CONAL ELLIOTT, Target, USA

Some categories are cartesian but not cartesian closed, e.g., vector spaces with linear maps. Most
of the rules for converting to CCC form rely on closure, which poses a problem for non-closed
categories. If, however, the overall function being converted does not involve functions in its
domain or codomain, then the corresponding closure-dependent CCC form can often (or perhaps
always) be converted to a form free of the Closed operations (apply, curry, and uncurry)—assuming
that none of the primitive operations (addC, mulC, eg, etc) involve exponentials in their types

hange, although homomorphism application is fairly simple and inexpensis
inating rules include the following:

Higher-order program {b, 1, *,0,+, ="}

|

100101

o

110100

Brero Twere |

)

(concise, expressive)

(simple, lean)

First-order machine {b, 1, %, 0, +}

10

BCC: Basic combinators a— b

. f:b—c g:a—b
id:a—a
fog:a—c
f:a—b g:a—c

T

pair f g:a — (b*c)

(a*xb) — a

o : (a*xb) — b

11

BCC: Function (or “exponential”) combinators

f:(axb) —c
ANf:a— (b= c)

apply : ((a = b) xa) — b

12

>
a —>b =— a—1b

{b,1,%,0,+,=} {b,1,x*,0,+}

Yes!

Exponential Elimination for
Bicartesian Closed Categorical Combinators

Nachiappan Valliappan Alejandro Russo
Chalmers University Chalmers University
Sweden Sweden
nacval@chalmers.se russo@chalmers.se
ABSTRACT [Cousineau et al. 1987; Lafont 1988]. Abadi et al. [1991] observe

that categorical combinators “make it easy to derive machines for
the A-calculus and to show the correctness of these machines”. This
ease is attributed to the absence of variables in combinators, which

Categorical combinators offer a simpler alternative to typed lambda
calculi for static analysis and implementation. Since categorical

and : (bool x bool) — bool
A and : bool — (bool = bool)

norm
apply o pair (A and) true = and o (pair true id)

: bool — bool : bool — bool

by rewriting?

14

Rewriting is difficult!

No well-understood
rewriting algorithms for
combinators

{[b7 17 *7 07 _|_7 i}

Rewriting techniques
for empty and sum
types are daunting

15

Rewrite no more, piggyback!

Normalization by Evaluation

eval : (a — b) —

all— b
reify : (Ja]—[b]) (b)

— a4 —1

norm : (a — b) — (a —>1 b)

norm t = reify (eval t)

Normalization by Evaluation

norm
apply o pair (A and) true = and o (pair true id)

eval \ | reify

(Ax.\y. and (x,y)) true ======== Ay. and (true,y)

17

Stories told and lessons learned

Proven correct, shown applicable

correct : (f:a — b) — norm f = f

defunc : Simpl a b — Simpl, a b

Insight: Target must be distributive!

distr:a*x(b+c¢) —1 (a *b) + (a * ¢)

18

Normalization
by Evaluation

This Photo is licensed under CC BY-SA

2019

19

https://commons.wikimedia.org/wiki/File:An_interesting_talk.png
https://creativecommons.org/licenses/by-sa/3.0/

[]
© ® O < @ Q Search: curiosity X @

InfoSec: Information S... v @ o algehed <% Qs
€ Threads n algehed 4:55PM

A All DMs

@ Mentions & reactions CuriOSity queSt’lon:

[Saved items

: More is it possible to prove noninterference using NBE?

» Channels

» Direct messages

2, 2lgehed

v Apps

+ Add apps

<

essage algehed

Part II

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

What is noninterference, anyway?

secret

public

q
q

22

Sec: Model of seclib el

I't:a
I'Freturnt: S ¢ a

label values

I'Em:S72a I'-f:a=S¥¢b

bind labeled values

I'Em:S 74 a 14

I'Fupm:57 a

I'Ekm>=f:5/40b

relabel values

23

How should you prove noninterference?

f : S Ha->S L bool

- Operational Semantics
- Denotational Semantics
- Parametricity

f (sa;) ww» return true

f (sa,) ww» return false

- Normalization!

24

What does normalization have to do with noninterference?

Inspect @ S Ha ->S L bool

o f sa = return (not false)

o f sa = snd (sa >>= (\x . return Xx)
, return false)

o f sa =

infinitely many arbitrarily complex possibilities...

26

Inspect @ S Ha ->S L bool

o f sa = return (not false)
norm
——— return true
o f sa = snd (sa >>= (\x . return Xx)
, return false)
norimm
=) return false
o f sa =

norm
———) return true/false

...that always normalize to a constant!

27

ldea: Normalize programs, and then inspect them.
It Sec guarantees noninterference, then programs of
form secret =2 public must be constant.

Simple Noninterference by Normalization

Carlos Tomé Cortifias” Nachiappan Valliappan
Chalmers University of Technology Chalmers University of Technology
carlos.tome@chalmers.se nacval@chalmers.se
Abstract sensitive data is often proved using a property called nonin-
Information-flow control (IFC) languages ensure programs terference. Noninterference ensures that an observer autho-
preserve the confidentiality of sensitive data. Noninterfer- rized to view the output of a program (pessimistically called
the desired rity proverty of such languages. states the attacker) cannot infer any sensitive data handled by it.

28

Normalize how? By Evaluation!

{[b7 17 *7 07 _|_7 j7 S Jé}

reuse previous work!
p eval : (I'-a) — ([I']—[a]) 140500
reify : ([I'|——[a])= (T Fuf a)
norm : (I't-a) — (I" Fur a)

norm t = reify (eval t)

29

Stories told and lessons learned

Proven correct and secure

correct : (I'Ft:a) > normt ~ ¢t

secure : (I'yFt: SV 7) =>4 C ¢ Vv (IsConst t)

Insight: Type-safe noninterference can be proved syntactically!

30

Normalization isn’t the only
opportunity, compilation too!

31

Part I11

W
»=Haskell

This Photo is licensed under CC BY-SA

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

Haski: DSL for programming streams based on Lustre

val x construct constant stream x, x, X, X,...
by x s construct a streamx, s,, S,, Ss,...
match s { pattern-match over s and return b; for a;

al%bl

an%bg}

33

Embedding Haski in Haskell

val :: a —> Haski (Stream a)
fby :: a —> Stream a -> Haskli (Stream a)
match :: .. => Stream a -> (a -> Stream b)

—-> Haskl (Stream b)
Free parsing and type-checking!

code gen :: Haskili (Stream a) -> Code

34

Compiling Recursive definitions

nats :: Haski (Stream Int)
nats = mdo
X <- 0 fby x + 1

return X

fib :: Haski (Stream Int)
fib = mdo
X <- 0 fby vy
y <— 1 ~“fby~ (x
Treturn x

+Y)

35

Compiling Pattern matching

data Loc = In | Out

flipper :: Stream Loc -> Haskli (Stream Loc)

flipper loc = mdo
loc’ <- loc "match™ \case
In -> Out
Out -> In
return loc’

switch loc {
case In:
case Out:

loc’ = Out
loc’ = In

36

Compiling Pattern matching using “The Trick”

code gen’ :: Stream a -> Code

Require type ‘a’ to be finitely enumerable

match :: FinEnum a
=> Stream a -> (a -> Stream b)
-> Haski (Stream b)

Enumerate [a,, a,, a,, ..., a,] map with (a -> Stream b)

37

Enabling Information-Flow Control (IFC)

Labeled Stream

sec_flipper :: LStream Loc -> Haskili (LStream Loc)

38

IFC primitives

label (High

Label) (loc

LStream Loc

unlabel (sloc

Haski

LStream Loc)

(Stream Loc)

Stream Loc)

39

Programming with IFC primitives

sec flipper :: LStream Loc -> Haski (LStream Loc)

sec _flipper sloc = mdo I
loc <- unlabel sloc
loc’ <- flipper loc
sloc’ <- label High loc’

- checked during compilation

return sloc’

40

Static IFC, but not using types!

- Labels are static values, not types

l.e.,, High :: Label,notHigh :: *

- IFC primitives are ‘“compiled away”

i.e., sec flipper = flipper, if there’s no violation

!

41

Using Haski for programming |oT devices

.
Towards Secure IoT Programming in Haskell
Nachiappan Valliappan Robert Krook
Chalmers University of Technology Chalmers University of Technology
Gothenburg, Sweden Gothenburg, Sweden
nacval@chalmers.se krookr@chalmers.se
Alejandro Russo Koen Claessen \
Chalmers University of Technology Chalmers University of Technology
Gothenburg, Sweden Gothenburg, Sweden
russo@chalmers.se koen@chalmers.se
Abstract 1 Introduction
IoT applications are often developed in programming lan- The Internet of Things (IoT) conceives a future where “things”

guages with low-level abstractions, where a seemingly in- (embedded electronics) can be interconnected. While a com-
nocent mistake might lead to severe security vulnerabilities. pelling vision, recent events have demonstrated the high vul-
Current IoT development tools make it hard to identify these nerability of IoT (e.g., [Bertino and Islam 2017; Fernandes et al.
vulnerabilities as they do not provide end-to-end guarantees 2016; Schuster et al. 2018; Wang et al. 2018]). Hence, it has
about how data flows within and between appliances. In this become important to develop security solutions which address
work we present Haski, an embedded domain specific language the concerns of unauthorized access to data and privacy loss. 42

Stories told and lessons learned

-
Haski on \.,‘ o+
Zephyr
\
(RTOS with a C API) (microcontroller)

Insight: eDSLs are amenable to use of partial evaluation techniques

Normalization

Compilation

¥
»=Haskell

https://www.nintendoblast.com.br/2014/05/mario-luigi-superstar-saga-gba.html
https://creativecommons.org/licenses/by-sa/3.0/

