Normalization for Fitch-Style Modal Calculi

Nachiappan Valliappan¹, Fabian Ruch, Carlos Tomé Cortiñas¹

¹Chalmers University of Technology

CHALMERS UNIVERSITY OF TECHNOLOGY

SPLS Glasgow, July 1, 2022

Modal Logic Intuitionistic K (IK)

$$\frac{\cdot \vdash A}{\Gamma \vdash \Box A} \text{ NECESSITATION }$$

$$\frac{1}{\Gamma \vdash \Box(A \to B) \to \Box A \to \Box B} \text{ Axiom K}$$

Axioms Beyond K

Fitch-Style Lambda Calculus for IK (λ_{IK}) [Borghuis 1994]

 $\Gamma ::= \cdot \mid \Gamma, x : A \mid \Gamma, \blacktriangle$

$$\frac{\Gamma, \mathbf{A} \vdash t : A}{\Gamma, x : A, \Gamma' \vdash x : A} \mathbf{A} \notin \Gamma' \qquad \frac{\Gamma, \mathbf{A} \vdash t : A}{\Gamma \vdash \mathbf{box} \ t : \Box A} \qquad \frac{\Gamma \vdash t : \Box A}{\Gamma, \mathbf{A}, \Gamma' \vdash \mathbf{unbox} \ t : A} \mathbf{A} \notin \Gamma'$$

 $A \nvDash \Box A \qquad \Box (A \times B) \vdash \Box A$ $\Box A \nvDash A \qquad \Box A, \Box B \vdash \Box (A \times B)$

Normalization Rules

(β) unbox (box t) $\longrightarrow t$ (η) $\Gamma \vdash t \longrightarrow box (unbox <math>t$) : $\Box A$

Normalization by Rewriting?

 η rules complicate the reduction relation

Each system demands different syntactic lemmas

 $\lambda_{\mathrm{IK}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Phi, \Gamma' \vdash \mathbf{unbox} \ t : A} \Phi \notin \Gamma' \qquad \lambda_{\mathrm{IK4}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Phi, \Gamma' \vdash \mathbf{unbox} \ t : A}$ $\lambda_{\mathrm{IT}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} \#_{\Phi}(\Gamma') \leq 1 \qquad \lambda_{\mathrm{IS4}} \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A}$

$(\[\] \] : \Gamma \vdash A \Rightarrow [\[\Gamma \] \] \stackrel{\cdot}{\to} [\[A \]]$ quote : $[\[\Gamma \] \] \stackrel{\cdot}{\to} [\[A \]] \Rightarrow \Gamma \vdash_{_{\rm NF}} A$

norm : $\Gamma \vdash A \Rightarrow \Gamma \vdash_{NF} A$ norm t = quote (t)

Models of Fitch-Style Modal Calculi

What is $\llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$?

• *Part 1*: Identify the possible-world semantics

• Part 2: Construct NbE models as instances

Possible-World Semantics for IPL

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i)
 R_i is a preorder that V respects

$$\llbracket \tau \rrbracket_w = V(w, \tau)$$
$$\llbracket A \to B \rrbracket_w = \forall w'. \ w R_i w' \Rightarrow \llbracket A \rrbracket_{w'} \Rightarrow \llbracket B \rrbracket_{w'}$$

Monotonicity:
$$wR_iw' \Rightarrow \llbracket A \rrbracket_w \Rightarrow \llbracket A \rrbracket_{w'}$$

Possible–World Semantics for IK [Plotkin and Stirling 1986]

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : $(\mathcal{W}, R_i, \underline{R_m})$
 R_i is $[\dots]$

$$\llbracket \tau \rrbracket_w = V(w, \tau)$$
$$\llbracket A \to B \rrbracket_w = \forall w'. \ w R_i w' \Rightarrow \llbracket A \rrbracket_{w'} \Rightarrow \llbracket B \rrbracket_{w'}$$
$$\llbracket \Box A \rrbracket_w = \forall w'. \ w R_i w' \Rightarrow \forall v. \ w' R_m v \Rightarrow \llbracket A \rrbracket_v$$

Monotonicity: $wR_iw' \Rightarrow \llbracket A \rrbracket_w \Rightarrow \llbracket A \rrbracket_{w'}$

Possible–World Semantics for $\lambda_{\rm IK}$

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i, R_m)
 R_i is $[\ldots]$

$$\llbracket \cdot \rrbracket_w = \top$$
$$\llbracket \Delta, A \rrbracket_w = \llbracket \Delta \rrbracket_w \times \llbracket A \rrbracket_w$$
$$\llbracket \Delta, \blacktriangle \rrbracket_w = ??$$

Box ~ Future

Lock ~ Past

Possible–World Semantics for λ_{IK}

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i, R_m)
 $R_i \text{ is } [\dots]$
 $R_m; R_i \subseteq R_i; R_m$
 $\llbracket \cdot \rrbracket_w = \top$
 $\llbracket \Delta, A \rrbracket_w = \llbracket \Delta \rrbracket_w \times \llbracket A \rrbracket_w$
 $\llbracket \Delta, \mathbf{A} \rrbracket_w = \exists u. \ \llbracket \Delta \rrbracket_u \times u R_m w$

Monotonicity: $wR_iw' \Rightarrow \llbracket \Delta \rrbracket_w \Rightarrow \llbracket \Delta \rrbracket_{w'}$

Possible–World Semantics for λ_{IK}

Model \mathcal{M} : (\mathcal{F}, V) Frame \mathcal{F} : (\mathcal{W}, R_i, R_m) R_i is a preorder that V respects $R_m; R_i \subseteq R_i; R_m$

$$(_) : \Gamma \vdash A \Rightarrow (\forall w. [[\Gamma]]_w \Rightarrow [[A]]_w)$$

$$quote : (\forall w. [[\Gamma]]_w \Rightarrow [[A]]_w) \Rightarrow \Gamma \vdash_{\rm NF} A$$

norm : $\Gamma \vdash A \Rightarrow \Gamma \vdash_{\operatorname{NF}} A$ norm $t = \operatorname{quote}(t)$

Normal Forms

Constructing an NbE Model for STLC

Model
$$\mathcal{M}$$
: (\mathcal{F}, V)
Frame \mathcal{F} : (\mathcal{W}, R_i)
 R_i is a preorder that V respects

Constructing an NbE Model for λ_{IK}

Model \mathcal{M} : (\mathcal{F}, V) Frame \mathcal{F} : (\mathcal{W}, R_i, R_m) R_i is a preorder that V respects $R_m; R_i \subseteq R_i; R_m$ quote: $(\forall w. \llbracket \Gamma \rrbracket_w \Rightarrow \llbracket A \rrbracket_w) \Rightarrow \Gamma \vdash_{\mathrm{NF}} A$ $\mathcal{W} = \text{Contexts}$ $V(\Gamma, \tau) = \Gamma \vdash_{\rm NE} \tau$ $R_i = \leq (\text{Weaker})$ $R_m = ??$

Key Observation From the Syntax of $\lambda_{IK/IT/IK4/IS4}$

$$\begin{split} \lambda_{\mathrm{IK}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \textcircled{\bullet}, \Gamma' \vdash \mathbf{unbox} \ t : A} \ \textcircled{\bullet} \notin \Gamma' \\ \frac{\Gamma, \textcircled{\bullet} \vdash t : A}{\Gamma \vdash \mathbf{box} \ t : \Box A} & \lambda_{\mathrm{IK4}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \textcircled{\bullet}, \Gamma' \vdash \mathbf{unbox} \ t : A} \\ & \lambda_{\mathrm{IT}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} \\ & \lambda_{\mathrm{IT}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} \ \#_{\textcircled{\bullet}}(\Gamma') \leq \\ & \lambda_{\mathrm{IS4}} & \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \ t : A} \end{split}$$

Key Observation From the Syntax of $\lambda_{IK/IT/IK4/IS4}$

Constructing an NbE Model for λ_{IK}

$$\lambda_{\rm IK} \; \frac{\Gamma \vdash t : \Box A}{\Gamma, \triangle, \Gamma' \vdash \text{unbox } t : A} \; \stackrel{\bigtriangleup \notin \Gamma'}{=} \;$$

$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \blacksquare, \Gamma' \text{ s.t. } \blacksquare \notin \Gamma'$

Constructing an NbE Model for $\lambda_{\rm IT}$

 $T: \Box A \to A$

$$\lambda_{\mathrm{IT}} \; \frac{\Gamma \vdash t : \Box A}{\Gamma, \Gamma' \vdash \mathbf{unbox} \; t : A} \; \#_{\textcircled{}}(\Gamma') \leq 1$$

$$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \Gamma' \text{ s.t. } \#_{\square}(\Gamma') \leq 1$$

 $R_m \text{ is reflexive}$

Constructing an NbE Model for λ_{IK4}

 $4: \ \Box A \to \Box \Box A$

$$\lambda_{\mathrm{IK4}} \ \frac{\Gamma \vdash t : \Box A}{\Gamma, \blacktriangle, \Gamma' \vdash \mathbf{unbox} \ t : A}$$

$$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \blacksquare, \Gamma'$$

 R_m is transitive

Constructing an NbE Model for λ_{IS4}

$\Gamma R_m \Delta \triangleq \exists \Gamma'. \Delta = \Gamma, \Gamma'$

 R_m is reflexive and transitive

quote :
$$(\forall \Delta. [[\Gamma]]_{\Delta} \Rightarrow [[A]]_{\Delta}) \Rightarrow \Gamma \vdash_{\operatorname{NF}} A$$

using reify : $\forall \Gamma. [[\Box A]]_{\Gamma} \Rightarrow \Gamma \vdash_{\operatorname{NF}} \Box A$
 $\operatorname{Know} [[\Box A]]_{\Gamma} = \forall \Gamma'. \Gamma R_i \Gamma' \Rightarrow \forall \Sigma. \Gamma' R_m \Sigma \Rightarrow [[A]]_{\Sigma}$
Pick Γ' as Γ and Σ as Γ, \clubsuit to get $[[A]]_{\Gamma, \textcircled{O}}$
reify $[[A]]_{\Gamma, \textcircled{O}}$ to get $n : \Gamma, \textcircled{O} \vdash_{\operatorname{NF}} A$
box $n : \Gamma \vdash_{\operatorname{NF}} \Box A$

Programming Language Applications

Interpretations of $\Box A$:

Language with capabilities for effects: Pure values of type AInformation-flow: Secret value of type APartial Evaluation: Dynamic value of type A

Normal forms can be used to prove:

- Capability safety
- Noninterference
- Binding-time correctness

Show: Any term $c : \operatorname{Cap} \vdash t : \Box(T())$ does not print

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \text{return } t : TA} \qquad \frac{\Gamma \vdash c : \text{Cap} \quad \Gamma \vdash s : \text{String}}{\Gamma \vdash \text{print } c \; s : T()}$$

$$\frac{\Gamma \vdash t : \mathrm{T}A \quad \Gamma \vdash f : A \to \mathrm{T}B}{\Gamma \vdash t \gg u : \mathrm{T}B}$$

Extend λ_{IS4} with a monad for printing

Proving Capability Safety

Show: Any term $c : \operatorname{Cap} \vdash t : \Box(T())$ does not print

$$c: \operatorname{Cap} \vdash_{\operatorname{NF}} \mathbf{box} \ (m_1 \gg m_2 \gg \dots \gg (\operatorname{return} ()))$$
$$c: \operatorname{Cap}, \textcircled{\bullet} \vdash_{\operatorname{NF}} m_1 \gg m_2 \gg \dots \gg (\operatorname{return} ())$$
$$m_i = \operatorname{print} c \ s \ \text{is impossible}$$
$$c: \operatorname{Cap}, \textcircled{\bullet} \vdash_{\operatorname{NF}} \operatorname{return} ()$$
$$c: \operatorname{Cap} \vdash_{\operatorname{NF}} \mathbf{box} \ (\operatorname{return} ())$$

Completeness, Decidability and Logical Applications

NbE can be used to prove:

- Deductive completness with possible-world semantics
- Completeness of equational theory with categorical models
- Decidability of equational theory
- Constructive proof of Denecessitation

In a Nutshell

Normalization for Fitch-style modal calculi can be achieved by constructing NbE models as instances of their possible-world semantics, thus avoiding tedious syntactic arguments based on reduction.

Paper and Mechanization: <u>nachivpn.me/k</u>

EOM