
thesis for the degree of doctor of philosophy

Modular Normalization with Types

Nachiappan Valliappan

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2023

Modular Normalization with Types
Nachiappan Valliappan

© Nachiappan Valliappan, 2023

ISBN 978-91-7905-850-0
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5316
ISSN 0346-718X

Department of Computer Science & Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Printed by Chalmers Reproservice,
Gothenburg, Sweden, 2023

ii

Modular Normalization with Types
Nachiappan Valliappan

Department of Computer Science & Engineering
Chalmers University of Technology

Abstract

With the increasing use of software in today’s digital world, software is becom-
ingmore andmore complex and the cost of developing andmaintaining software has
skyrocketed. It has become pressing to develop software using effective tools that
reduce this cost. Programming language research aims to develop such tools using
mathematically rigorous foundations. A recurring and central concept in program-
ming language research is normalization: the process of transforming a complex
expression in a language to a canonical form while preserving its meaning. Normal-
ization has compelling benefits in theory and practice, but is extremely difficult to
achieve. Several program transformations that are used to optimise programs, prove
properties of languages and check program equivalence, for instance, are after all
instances of normalization, but they are seldom viewed as such.

Viewed through the lens of currentmethods, normalization lacks the ability to be
broken into sub-problems and solved independently, i.e., lacksmodularity. To make
matters worse, such methods rely excessively on the syntax of the language, making
the resulting normalization algorithms brittle and sensitive to changes in the syntax.
When the syntax of the language evolves due to modification or extension, as it
almost always does in practice, the normalization algorithmmay need to be revisited
entirely. To circumvent these problems, normalization is currently either abandoned
entirely or concrete instances of normalization are achieved using ad hoc means
specific to a particular language. Continuing this trend in programming language
research poses the risk of building on aweak foundationwhere languages either lack
fundamental properties that follow from normalization or several concrete instances
end up being repeated in an ad hoc manner that lacks reusability.

This thesis advocates for the use of type-directed Normalization by Evaluation
(NbE) to develop normalization algorithms. NbE is a technique that provides an op-
portunity for a modular implementation of normalization algorithms by allowing us
to disentangle the syntax of a language from its semantics. Types further this oppor-
tunity by allowing us to dissect a language into isolated fragments, such as functions
and products, with an individual specification of syntax and semantics. To illustrate
type-directed NbE in context, we develop NbE algorithms and show their applica-
bility for typed programming language calculi in three different domains (modal
types, static information-flow control and categorical combinators) and for a family
of embedded-domain specific languages in Haskell.

Keywords: programming language theory, normalization, type systems

iii

Acknowledgments

My research at Chalmers has been a constant tug of war between what I would
like to do and what needs to be done. Should I follow the elegant path of theoret-
ical pursuit? Or must I solve today’s problems and push the boundaries of current
technology? These questions, in addition to my wide range of interests, have often
left me conflicted and occasionally in a state of despair. I cannot imagine advising
me being an easy job, and yet Alejandro Russo has been patient and supportive at
all the times when it mattered the most. I am grateful for his advice and guidance.

This thesis began with Andreas Abel handing me his notes on Normalization by
Evaluation (NbE), the topic of this thesis, from his desk while declaring “these have
been waiting for you”. I am deeply grateful to Andreas for suggesting NbE and for
all the recommendations and technical advice he has offered me over the years.

I am very fortunate to have had Carlos Tomé Cortiñas and Fabian Ruch as my
peers, collaborators and friends over the course of developing this thesis. They have
helpedme refinemy intuition-driven approach and I have benefited immensely from
the countless hours we have spent together discussing technical and philosophical
matters. Fabian has been an unofficial technical advisor since the inception of this
thesis, and I am thankful for all his suggestions and enthusiasm towards NbE.

The programming languages community is a wonderful lot of passionate people
and I am glad to be a part of it. Dominic Orchard reached out to me at a critical
moment when I was doubtful about completing this thesis, and I am grateful for his
advice in the discussion that followed. Sam Lindley and Ohad Kammar have taken
a considerable interest in both the development of this thesis and my career as a
researcher. Sandro Stucki, Thierry Coquand, Graham Leigh and several anonymous
reviewers have offered valuable comments and suggestions on several parts of this
thesis. I am indebted to all of them for their advice, criticism and encouragement.

Without the unwavering care and support of my parents, I would not be in a po-
sition of luxury where I dedicate my time only to things I am interested in. My
friends and colleagues at Chalmers—including Matthí, Agustín, Abhiroop, Irene,
Jeremy, Robert, Ivan, Mohammad, Elisabet, Alejandro, and Benjamin—have made
this journey an enjoyable experience. Without the early encouragement of Murali
Krishnan and Richa George, none of this would have happened, and without the
enjoyable experiences with my friends, none of this would be worth it. Thank you!

This work was funded by the Swedish Foundation for Strategic Research (SSF)
under the project Octopi (Ref. RIT17-0023).

Nachi. May 5, 2023.

v

Contents

Abstract iii

Acknowledgments v

Overview

I Introduction 3
I.1 Why Normalization Matters . 4
I.2 The Sorcery of Normalization by Evaluation 5
I.3 Fistful of Problems and This Thesis 6

I.3.1 Fitch-Style Modal Calculi 7
I.3.2 Embedded Domain-Specific Languages 7
I.3.3 Language-Based Security 9
I.3.4 Categorical Combinators . 10

II Statement of contributions 13
A Normalization for Fitch-Style Modal Calculi 13
B Practical Normalization by Evaluation for EDSLs 14
C Simple Noninterference by Normalization 14
D Exponential Elimination for Bicartesian Closed Categorical Combi-

nators . 15

Bibliography 17

Papers

A Normalization for Fitch-Style Modal Calculi 23

B Practical Normalization by Evaluation for EDSLs 59

C Simple Noninterference by Normalization 91

D Exponential Elimination for Bicartesian Closed Categorical Combi-
nators 117

vii

Overview

I
Introduction

The thesis underlying this bundle of papers, henceforth called a thesis, is:

Type-directed Normalization by Evaluation is a solution to the problem of
developingmodular normalization algorithms that are robust to extension.

Normalization is a broad term used for the process of transforming a program
into a canonical shape while preserving its meaning. The objective of normalization
can be fundamental (e.g., checking program equivalence or proving a property of a
program) or more practical (e.g., optimizing performance or analyzing a program).
By "modular" normalization, I mean the ability to decompose a normalization algo-
rithm into independent modules that can be reused under different circumstances.

Normalization algorithms are currently implemented by rewriting the syntax
of a given program in accordance with certain reduction rules. For example, the
following reduction rule specifies that an expression 0+ x can be rewritten to x.

0+ x 7→ x

With sufficient reduction rules and sophisticated rewriting strategies, normalization
can be achieved even for complex languages. Rewriting techniques are neither the
enemy nor an ally of this thesis, but the difficulty with normalizing by rewriting
syntax lies in its very nature: it is a process sensitive to the syntax of the language.
When the syntax of the language is modified or extended, a rewriting algorithm
may need to be revisited entirely. The goal of this thesis is to develop modular
normalization algorithms that are robust to modification and extension.

To achieve its goal, this thesis1 employs a normalization technique known as
Normalization by Evaluation (NbE) in combination with the types of a language.
NbE avoids rewriting and instead normalizes a program by evaluating it in a suit-
able semantic domain. NbE provides an opportunity for a modular implementation
of normalization by decoupling the syntax of a language from its semantics. Types
further this opportunity by allowing us to dissect a language into isolated fragments,
such as functions and products, with an individual specification of syntax and se-
mantics. Explaining the sorcery of NbE and illustrating its potential in the presence
of types for implementing modular normalization algorithms for well-typed func-
tional programming languages is the main non-technical contribution of this thesis.

1an extended version of my licentiate thesis [38]

3

Modular Normalization with Types

I.1 Why Normalization Matters

In the design and implementation of programming languages, normalization is a
recurring concept of central importance. The main benefit of normalization lies in
its ability to reduce infinitely large equivalence classes of terms identified by their
semantics to their normal forms, thus vastly reducing the set of terms that we must
take into consideration while reasoning about the language. In programming lan-
guages, normalization may have several objectives:

• Checking program equivalence: How dowe know if the integer expressions 2+
2 ∗ (x − 1) and 4 ∗ (x − 1) are equal? We can normalize them to 2 ∗ x and
(4 ∗ x) − 4 respectively, and observe that they are not equal unless x = 2.
Normalization is widely used to check the equivalence of programs and proofs
in the implementation of dependently typed languages and proof assistants.

• Implementing program optimization: Normalization can be used to optimise
a program. The integer expression 2 + 2 ∗ (x − 1) contains the unnecessary
overhead of evaluating known arithmetic operations on literal numbers, and
can be optimally replaced by 2 ∗ x without changing its meaning.

• Proving properties of complex type systems: Type systems enable the detec-
tion and prevention of errors in a program before executing it by associating
every expression in the language with a type. For example, the type assign-
ment 2 : Int denotes that the expression literal 2 has the integer type Int.
The integrity of a complex type system lies within its ability to correctly asso-
ciate a value to its expected type, and not, for example, incorrectly associate
a string literal "hello" to the type Int. This property, called canonicity, can
be proved with normalization by showing that canonical forms of all (closed)
expressions with type Int are in fact integers.

• Proving completeness of semantic specification: How do we know that a speci-
fication of the semantics of a language is complete? That is, how do we know
that we have not missed an intended equivalence between two expressions
in a language such as (x + y) ∗ z ≈ (x ∗ z) + (y ∗ z)? Normalization allows us
to prove completeness with respect to a semantic model of the language that
defines the expected specification, and thus allows us to gain confidence in its
completeness with respect to the model.

Normalization is also prevalent in other areas of logic and computer science. For
example, in formal logic, normalization is used to prove meta-theoretic properties of
a proof system such as logical consistency and the subformula property. In formal
verification, normalization is used to convert a logical formula to a normal form for
the purpose of deciding its truth. Similarly normalization is also used in databases
to eliminate data redundancy and improve the integrity of data in a database. This
thesis is developed in the context of programming languages, particularlywell-typed
functional programming languages, but it may have applications beyond this area.

4

I. Introduction

I.2 The Sorcery of Normalization by Evaluation

This subsection gives an introduction to the essence of NbE by illustrating the im-
plementation of an NbE algorithm for an extremely simple language: arithmetic
expressions consisting of the addition of natural numbers. For this purpose, we en-
code the natural numbers 0 as Zero, 1 as Succ Zero, 2 as Succ (Succ Zero), and so
on, using a constant symbol Zero and a successor function Succ. Addition in a given
expression can be reduced using one of the two following reduction steps.

Zero+ x 7→ x

(Succ x) + y 7→ x+ (Succ y)

The reduction relation 7→ specifies how an expression must be reduced to another
expression. Using this specification, the expression 1+2 can be normalized to 3 by
reducing it as follows.

Succ Zero+ Succ (Succ Zero) (1 + 2)

7→ Zero+ Succ (Succ (Succ Zero)) (0 + 3)

7→ Succ (Succ (Succ Zero)) (3)

Observe that we rewrite the expression twice before reaching the normal form,
which cannot be reduced anymore since none of the reduction steps apply. Complex
expressions may need to be rewritten several times before a normal form is reached.
Rewriting is the basis for traditional normalization procedures, while NbE, on the
other hand, does not involve any rewriting.

NbE achieves normalization in two steps: 1) evaluating the expressions in a
“host” language, and 2) quoting (sometimes called reifying) the resulting values back
to expressions. Let us implement NbE for our example language using the program-
ming language Haskell as the host.

• Evaluation: We implement the first step using an interpreter function called
eval. This function interprets natural numbers as integers and the addition
of natural numbers by addition of integers.

eval :: Expr Nat -> Int
eval Zero = 0
eval (Succ x) = eval x + 1
eval (x + y) = eval x + eval y

• Quotation: The second step is to invert the integer values back to natural num-
ber expressions, and is implemented by a function called quote. This function
need not be defined on all integer values, but only on the values that may be
returned by eval.

quote :: Int -> Expr Nat
quote 0 = Zero
quote n = Succ (quote (n - 1))

5

Modular Normalization with Types

This Thesis

Paper A
(Modal Calculi)

Paper B
(EDSLs in Haskell)

Modular NbE

Applications of NbE

Paper C
(Static Noninterference)

Paper D
(Exponential Elimination)

Figure I.1: Outline of this thesis

We implement the normalization procedure by a function norm that applies quote
on the result of eval.

norm :: Expr Nat -> Expr Nat
norm e = quote (eval e)

Observe that an invocation of norm on the expression Succ Zero+Succ (Succ Zero)
does indeed return its normal form Succ (Succ (Succ Zero)). norm uses the ability
of Haskell to evaluate the addition of integers to normalize the addition of natural
numbers. This function can be extended easily to other arithmetic operators, and,
with some care, even to support variables and other unknowns in expressions.

This seemingly simple idea to leverage a host language’s evaluation mecha-
nism to normalize expressions extends much beyond arithmetic expressions, and
has found a wide range of applications. NbE has been used to achieve normalization
results in various programming calculi [2, 7, 9, 18, 24, 30], decide equality in alge-
braic structures [4], typecheck dependently-typed programming languages [3, 25],
and to prove completeness [5, 17] and coherence [10] theorems. NbE algorithms
have been observed to yield much faster normalization than their rewriting coun-
terparts [8, 29], and there is also evidence that indicates that it can be used to speed
up compilation in optimizing compilers [29].

I.3 Fistful of Problems and This Thesis

This section gives an overview of the problems addressed in this thesis by the pa-
pers in the forthcoming chapters. These problems occur independently in different

6

I. Introduction

domains, and thus the following subsections may be read in any order. These sub-
sections discuss the interest in these problems (and their domains) and provide an
introduction to the corresponding chapters—see Figure I.1 for an outline.

I.3.1 Fitch-Style Modal Calculi
Modal types In type systems, amodality can be broadly construed as a unary type
constructor with certain properties. Type systems with modalities have found a
wide range of applications in programming languages to capture and specify prop-
erties of a program in its type. For example, in language-based security, a field
dedicated to developing secure programming languages, a substantial number of
languages use modalities to ensure sensitive data is not leaked to an unauthorized
principal [27]. Using a modal type Secret Int, the programmer can indicate via
the modality Secret to the type system that the underlying integer value must be
kept a secret. The type system automatically tracks the flow of this integer in the
program and prevents the need for a careful and error-pronemanual analysis. Modal
type systems offer a form of lightweight and low cost alternative to formal verifi-
cation of programs for preventing software errors since type systems are a familiar
abstraction used widely in mainstream programming languages.

The design and implementation of modal type systems for various applications
is a vibrant area of ongoing research. Different applications may demand different
modal operations, which means there can be several different kinds of modalities.
The necessitymodality is one suchmodality that has found applications inmodelling
purity in an impure functional language [13], confidentiality in information-flow
control [32], and binding-time separation in partial evaluation and staged computa-
tion [20].

Fitch-style modal calculi Fitch-style modal lambda calculi [12, 16, 31] feature ne-
cessity modalities in a typed lambda calculus by extending the typing context with
a delimiting "lock" operator. The characteristic lock operator simplifies formulating
calculi that incorporate different modal operations and these calculi have excellent
computational properties. Each variant demands, however, different, tedious and
seemingly ad hoc treatment to prove meta-theoretic properties such as normaliza-
tion. In Chapter A, we identify the possible-world semantics of Fitch-style calculi
and use it to develop normalization. The possible-world semantics enables a modu-
lar implementation of normalization for various Fitch-style calculi by isolating their
differences to a specific parameter that identifies the modal fragment. We show-
case several consequences of normalization for proving meta-theoretic properties
of Fitch-style calculi based on different interpretations of the necessity modality in
programming languages, such as capability safety, noninterference and a form of
binding-time correctness.

I.3.2 Embedded Domain-Specific Languages
Overview An embedded domain-specific language (eDSL) is an implementation of
a domain-specific language (DSL) as a library in a host language. Implementing a
DSL as an eDSL offers two main advantages:

7

Modular Normalization with Types

• The programmer can leverage the features of the host, typically a more pow-
erful general purpose programming language, to write programs in the eDSL.

• Developing an eDSL compiler requires much lesser effort than building a dedi-
cated DSL compiler, since the host language’s compiler can be reused for stan-
dard compilation phases such as lexical analysis, parsing and type-checking.

The tradeoff, however, is that programming an eDSL may require some famil-
iarity of the host language.

Let us consider the example with arithmetic expressions again. The following
library functions in Haskell constitute an eDSL to write simple arithmetic expres-
sions.

val :: Int -> Expr Int
(+) :: Expr Int -> Expr Int -> Expr Int
(*) :: Expr Int -> Expr Int -> Expr Int

Using these functions, we can write the expression 1+2 as val 1 + val 2.
Suppose that we would like to write an expression xn that represents the n-th

power of an expression x, for some known non-negative integer n. How should we
do this when exponentiation is not a primitive function provided by the eDSL? If this
were a mere DSL, we would write x ∗ x ∗ x for x3, for example, since multiplication
is provided. In an eDSL, however, we can take this a step further to write a generic
power function that generates this expression automatically for an arbitrary integer
n.

power :: Int -> Expr Int -> Expr Int
power n x = if (n <= 0) then x else (x * (power (n - 1))

Using the power function, we may write power 8 x for x8 instead of x ∗ x ∗ x ∗
x ∗x ∗x ∗x ∗x. The former variant is concise, less error-prone and also makes it easy
to modify and reuse code.

Notice that the definition of the power function uses Haskell’s features such as
conditionals (if ...), comparison (n <= 0) and function recursion (power (n - 1)).
Even if the eDSL does not implement these features natively, we are able to use
them to write expressions. EDSLs make it easy to derive additional functionality
by leveraging those the host language. EDSLs, specifically in Haskell, have found a
wide range of applications: hardware description [11], digital signal-processing [6],
runtime verification [21, 35], parallel and distributed programming [14, 23], GPU
programming [15]—and the list goes on.

Compiling EDSLs In an eDSL program we may think of a value of type Int as a
static integer that is known at compile-time, and a value of type Expr Int as a dy-
namic integer that is known only at runtime. This stage separation of values as static
and dynamic corresponds to a manual form of binding-time analysis in partial eval-
uation [26], and presents an opportunity to exploit Haskell’s execution mechanism
to evaluate static computations in an eDSL program.

8

I. Introduction

Though separation of stages enables the programmer to manually specify those
parts of an eDSL program that must be evaluated by Haskell, it also burdens them
to maintain multiple variants of the same program. In addition to power function
defined above, wemay also desire the several variants of the exponentiation function
as follows, each corresponding to a different separation of stages for its arguments
and result.

power0 :: Int -> Int -> Int
power1 :: Int -> Expr Int -> Expr Int
power2 :: Expr Int -> Int -> Expr Int
power3 :: Int -> Int -> Expr Int
...

NbE offers a modular solution to this problem by making specialization auto-
matic, without the need for manual stage separation. Chapter B shows that typed
NbE is particularly well-suited for specializing eDSL programs in Haskell given the
natural reliance on a host language. We argue that existing techniques for embed-
ding DSLs in Haskell (e.g., [37]), which may at first seem somewhat ad hoc, can be
viewed as instances of NbE after all.

I.3.3 Language-Based Security

Information-Flow Control. Information-Flow Control (IFC) is a language-based
security enforcement technique that guarantees the confidentiality of sensitive data
by controlling how information is allowed to flow in a program. The guarantee that
programs secured by an IFC system do not leak sensitive data is often proved using
a property called noninterference. Noninterference ensures that an observer autho-
rized to view the output of a program (pessimistically called the attacker) cannot
infer any sensitive data handled by the program from its output.

Proof by Normalization. To prove that an IFC system ensures noninterference,
we must show that the public output of secured programs remain unaffected by
variations in its secret inputs. If the output remains unaffected by a given input,
then it must be the case that it does not depend on the input to compute the output—
thus ensuring that the attacker could not possibly learn about the secret inputs.
Such programs may refer to the secret input in its body, but they must not use it to
compute the public output.

Chapter C proposes a new syntax-directed proof strategy to prove noninterfer-
ence for well-typed programming calculi that enforce static IFC. The key idea of
this chapter is to use normalization to eliminate any unnecessary input references
in a program, leaving behind references that are only absolutely necessary to com-
pute the result. Noninterference is then proved by ensuring that no public output
depends on a reference to a secret input in the normal form of a program—a task
that is much simpler than most semantics-based proof techniques. This technique
is illustrated for a model of the terminating fragment of the seclib library [36] in
Haskell, which is a simply-typed lambda calculus extended with IFC primitives.

9

Modular Normalization with Types

I.3.4 Categorical Combinators
Combinator Calculi. Combinators can be understood as program building blocks
which can be assembled in various ways to construct programs. In functional pro-
gramming, a combinator is a primitive higher order function, which can be applied
to and composed with other combinators to build more complex functions. Unlike
programming languages based on the lambda calculus, combinators lack a notion
of variables. In practice, this means that programming using combinators can be
an unbearable task and should probably be avoided at all costs. But then, why care
about combinators at all?

“...roughly λ-calculus is well-suited for programming, and combinators (of
Curry, or those introduced here) allow for implementations getting rid of
some difficulties in the scope of variables.”
—P.-L. Curien (1985, Typed Categorical Combinatory Logic)

The output of a function in the lambda calculus is computed using a process
known as β-reduction. The primary difficulty with β-reduction lies in its very def-
inition: the output of a function λx.b for some input i is computed by substituting
all occurrences of the argument variable x, in the body of the function b, with the
actual input i. This statement is succinctly captured by the β-rule:

(λx.b)i 7→ b[i/x]

This rule states that a function λx.b when applied to an argument i, can be reduced
to a simpler term b[i/x], which is the result of substituting all occurrences of xwith i
in the body of the function b. Although substitution readily appeals to the intuition
of replacement, there are a number of auxiliary conditions that must be checked
before the actual replacement of x with i. For this reason, substitution has long had
a reputation for being notoriously difficult to implement and reason about.

Combinators, on the other hand, avoid the need for substitution by disallow-
ing variables entirely. Instead, they adopt a style of reduction that relies on simply
“shifting symbols”. The (categorical) combinator equivalent of the β-rule is, what I
like to call, the exponential elimination rule:

apply ◦ ⟨Λb, i⟩ 7→ b ◦ ⟨id, i⟩

This rule reads as: the application (apply) of a function (Λb) to an argument (i) can be
reduced to a composition of the body (b) with its input (i) in an appropriate manner.
The operator _◦_ denotes the sequencing, or composition, of two combinators and
⟨_,_⟩ denotes the coupling, or pairing, of two combinators. We shall return to the
specifics of this rule in a later chapter, but simply observe here that it does not use
the substitution operation on the right-hand side, and that the body of the function
(b) remains unmodified.

The absence of substitution, an external operation, means that we need not im-
pose additional correctness criteria over the computation rules—which is great news
for formal reasoning! In essence, the very characteristic of combinators that makes
them impractical for programming also makes them amenable to implementation
and reasoning: the lack of variables.

10

I. Introduction

Categorical Combinators. Categorical combinators are combinators designed af-
ter arrows, ormorphisms, in category theory. They were introduced by Pierre-Louis
Curien as an alternative to the SKI combinator calculus to implement functional
programming languages.

The primary motivation behind categorical combinators appears to be two-fold:
1) to faithfully simulate reduction in lambda calculus without the difficulty of vari-
able bindings, and 2) to establish a syntactic equivalence theorem between the lambda
calculus and the categorical model underlying the combinators—namely, the (free)
cartesian closed categories. Categorical combinators offered an appealing alterna-
tive to Church’s more popular SKI combinator calculi, since their design is based
on a semantic model. This means that the reduction rules of the combinators arise
naturally from the model rather than having to be imposed.

“...categorical combinatory logic is entirely faithful to βreduction where
[Curry’s SKI] combinatory logic needs additional rather complex and un-
natural axioms to be...”
—P.-L. Curien (1986, Categorical Combinators)

Categorical combinators were used to formulate the Catergorical Abstract Ma-
chine (CAM) [19], which was used to used to implement early versions of Caml—the
predecessor of the OCaml programming language. Later versions of Caml, however,
did not use CAM due to performance issues and difficulty with optimizations 2. De-
spite its failure in use for compiling a programming language in practice, the ease of
formulating an abstract machine for categorical combinators (noted in [1]) seems to
have influenced several variants of CAM, an example of which is the Linear Abstract
Machine [28].

In recent times, variants of (what appear to be) categorical combinators have
reappeared in practical applications. They have been used to compile Haskell code
using user-defined interpretations [22] and in the development of a language for
executing smart contracts on the blockchain [34].

Exponential elimination. Exponentials are the equivalent of higher-order func-
tions in categorical combinator calculi. The runtime representation of an exponen-
tial is a closure, a value accompanied by an environment. Adding support for closures
complicates the implementation of the abstract machine, and makes certain static
analyses difficult [39]. In [22], exponentials narrow the domain of target interpreta-
tions that are supported by the compiler.

The exponential elimination rule from earlier indicates that exponentials can be
eliminated in a specific case. This makes us wonder: can exponentials be eliminated
statically by applying this rule repetitively on a program? This would solve both
the above problems. Without a careful analysis, however, it is difficult to answer
this question, since there may be interactions with other rules in the calculus that
prevent exponential elimination rule from being applied.

Chapter D shows that exponential elimination can be achieved for categorical
combinators with sums and products, in the presence of a special distributivity com-
binator that distributes products over sums. The ability to erase the equivalent of

2https://caml.inria.fr/about/history.en.html

11

Modular Normalization with Types

higher-order functions in functional calculus (known as defunctionalization) is not
news [33], but the distributivity requirement is a somewhat surprising insight. A
technical challenge faced by this result is the presence of the empty and sum types,
both of which are known for making normalization notoriously difficult.

12

II
Statement of contributions

This thesis is a bundle of articles published at different venues focused on pro-
gramming language research. The initial conception, overall development and writ-
ing of all these articles were led by me. This chapter outlines my individual contri-
butions to their technical development alongside a listing of their abstracts.

A Normalization for Fitch-Style Modal Calculi
Nachiappan Valliappan, Fabian Ruch, Carlos Tomé Cortiñas

Fitch-style modal lambda calculi enable programming with necessity modali-
ties in a typed lambda calculus by extending the typing context with a delimiting
operator that is denoted by a lock. The addition of locks simplifies the formula-
tion of typing rules for calculi that incorporate different modal axioms, but each
variant demands different, tedious and seemingly ad hoc syntactic lemmas to prove
normalization. In this work, we take a semantic approach to normalization, called
normalization by evaluation (NbE), by leveraging the possible-world semantics of
Fitch-style calculi to yield a more modular approach to normalization. We show that
NbE models can be constructed for calculi that incorporate the K, T and 4 axioms of
modal logic, as suitable instantiations of the possible-world semantics. In addition
to existing results that handle β-equivalence, our normalization result also consid-
ers η-equivalence for these calculi. Our key results have been mechanized in the
proof assistant Agda. Finally, we showcase several consequences of normalization
for proving meta-theoretic properties of Fitch-style calculi as well as programming-
language applications based on different interpretations of the necessity modality.

Statement of contributions I independently mechanized the first Agda prototype
using the categorical semantics of Fitch-style calculi and identified the common pat-
tern in the construction of their NbE models. Fabian showed me a connection to
possible-world semantics in modal logic that gave a systematic and elegant account
of this pattern. This convinced me to factor the construction of the NbE models
through possible-world semantics, roughly midway during this development, from
which point onwards Fabian and I co-developed the remaining technical results.
Carlos helped us explore and understand the applications of these calculi.

Appeared in: Proceedings of the ACM on Programming Languages Vol 6. ICFP (2022)

13

Modular Normalization with Types

B Practical Normalization by Evaluation for EDSLs
Nachiappan Valliappan, Alejandro Russo, Sam Lindley

Embedded domain-specific languages (eDSLs) are typically implemented in a
rich host language, such as Haskell, using a combination of deep and shallow em-
bedding techniques. While such a combination enables programmers to exploit the
execution mechanism of Haskell to build and specialize eDSL programs, it blurs
the distinction between the host language and the eDSL. As a consequence, exten-
sion with features such as sums and effects requires a significant amount of inge-
nuity from the eDSL designer. In this paper, we demonstrate that Normalization
by Evaluation (NbE) provides a principled framework for building, extending, and
customizing eDSLs. We present a comprehensive treatment of NbE for deeply em-
bedded eDSLs in Haskell that involves a rich set of features such as sums, arrays,
exceptions and state, while addressing practical concerns about normalization such
as code expansion and the addition of domain-specific features.

Statement of contributions I developed all the technical results in this paper un-
der the supervision of Alejandro. Sam helped us understand and survey earlier work
(some unpublished) that set out to leverage NbE to embed DSLs.

Appeared in: Proceedings of the 14th ACM SIGPLAN International Symposium on
Haskell (2021)

C Simple Noninterference by Normalization
Carlos Tomé Cortiñas, Nachiappan Valliappan

Information-flow control (IFC) languages ensure programs preserve the confi-
dentiality of sensitive data. Noninterference, the desired security property of such
languages, states that public outputs of programs must not depend on sensitive in-
puts. In this paper, we show that noninterference can be proved using normalization.
Unlike arbitrary terms, normal forms of programs are well-principled and obey use-
ful syntactic properties—hence enabling a simpler proof of noninterference. Since
our proof is syntax-directed, it offers an appealing alternative to traditional semantic
based techniques to prove noninterference.

In particular, we prove noninterference for a static IFC calculus, based onHaskell’s
seclib library, using normalization. Our proof follows by straightforward induc-
tion on the structure of normal forms. We implement normalization using normal-
ization by evaluation and prove that the generated normal forms preserve semantics.
Our results have been verified in the Agda proof assistant.

Statement of contributions Carlos and I shared the technical development in this
work. I constructed most of the NbE model and proved it correct, while Carlos
helped me understand, formulate and prove noninterference.

Appeared in: Proceedings of the 14th ACM SIGSAC Workshop on Programming Lan-
guages and Analysis for Security (2019)

14

II. Statement of contributions

D Exponential Elimination forBicartesianClosedCat-
egorical Combinators

Nachiappan Valliappan, Alejandro Russo

Categorical combinators offer a simpler alternative to typed lambda calculi for
static analysis and implementation. Since categorical combinators are accompanied
by a rich set of conversion rules which arise from categorical laws, they also offer a
plethora of opportunities for program optimization. It is unclear, however, how such
rules can be applied in a systematic manner to eliminate intermediate values such as
exponentials, the categorical equivalent of higher-order functions, from a program
built using combinators. Exponential elimination simplifies static analysis and en-
ables a simple closure-free implementation of categorical combinators—reasons for
which it has been sought after.

In this paper, we prove exponential elimination for bicartesian closed categori-
cal (BCC) combinators using normalization. We achieve this by showing that BCC
terms can be normalized to normal forms which obey a weak subformula property.
We implement normalization using Normalization by Evaluation, and also show that
the generated normal forms are correct using logical relations.

Statement of contributions I developed all the technical results in this paper un-
der the supervision of Alejandro.

Appeared in: Proceedings of the 21st International Symposium on Principles and Prac-
tice of Declarative Programming (2019)

15

Bibliography
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal

of functional programming, 1(4):375–416, 1991.

[2] A. Abel and C. Sattler. Normalization by evaluation for call-by-push-value and
polarized lambda calculus. In Proceedings of the 21st International Symposium on
Principles and Practice of Programming Languages 2019, pages 1–12, 2019.

[3] A. Abel and H. Talk. Normalization by evaluation: Dependent types and im-
predicativity. Unpublished. http://www.tcs.ifi.lmu.de/˜abel/habil.pdf, 2013.

[4] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evaluation
for typed lambda calculus with coproducts. In Proceedings 16th Annual IEEE
Symposium on Logic in Computer Science, pages 303–310. IEEE, 2001.

[5] T. Altenkirch and T. Uustalu. Normalization by evaluation for λ→ 2. In In-
ternational Symposium on Functional and Logic Programming, pages 260–275.
Springer, 2004.

[6] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård, A. Pers-
son, M. Sheeran, J. Svenningsson, and A. Vajdax. Feldspar: A domain specific
language for digital signal processing algorithms. In Eighth ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign (MEMOCODE
2010), pages 169–178. IEEE, 2010.

[7] V. Balat, R. Di Cosmo, andM. Fiore. Extensional normalisation and type-directed
partial evaluation for typed lambda calculus with sums. ACM SIGPLAN Notices,
39(1):64–76, 2004.

[8] U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation. In
Prospects for Hardware Foundations, pages 117–137. Springer, 1998.

[9] U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for
typed lambda-calculus. 1991.

[10] I. Beylin and P. Dybjer. Extracting a proof of coherence for monoidal categories
from a proof of normalization for monoids. In International Workshop on Types
for Proofs and Programs, pages 47–61. Springer, 1995.

[11] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design in
haskell. ACM SIGPLAN Notices, 34(1):174–184, 1998.

[12] V. Borghuis. Coming to terms with modal logic : on the interpretation of modal-
ities in typed lambda-calculus. PhD thesis, Mathematics and Computer Science,
1994.

[13] V. Choudhury and N. Krishnaswami. Recovering purity with comonads and
capabilities. Proc. ACM Program. Lang., 4(ICFP):111:1–111:28, 2020.

17

Modular Normalization with Types

[14] K. Claessen. A poor man’s concurrency monad. Journal of Functional Program-
ming, 9(3):313–323, 1999.

[15] K. Claessen, M. Sheeran, and J. Svensson. Obsidian: Gpu programming in
haskell. Designing Correct Circuits, page 101, 2008.

[16] R. Clouston. Fitch-style modal lambda calculi. In C. Baier and U. D. Lago, ed-
itors, Foundations of Software Science and Computation Structures - 21st Interna-
tional Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-
20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages
258–275. Springer, 2018.

[17] C. Coquand. From semantics to rules: A machine assisted analysis. In Interna-
tional Workshop on Computer Science Logic, pages 91–105. Springer, 1993.

[18] T. Coquand and P. Dybjer. Intuitionistic model constructions and normaliza-
tion proofs. Mathematical Structures in Computer Science, 7(1):75–94, 1997.

[19] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine.
Science of computer programming, 8(2):173–202, 1987.

[20] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of
the ACM, 48(3):555–604, 2001.

[21] F. Dedden. Compiling an haskell edsl to c: A new c back-end for the copilot
runtime verification framework. Master’s thesis, 2018.

[22] C. Elliott. Compiling to categories. Proceedings of the ACM on Programming
Languages, 1(ICFP):1–27, 2017.

[23] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards haskell in the cloud. In
Proceedings of the 4th ACM symposium on Haskell, pages 118–129, 2011.

[24] A. Filinski. Normalization by evaluation for the computational lambda-
calculus. In International Conference on Typed Lambda Calculi and Applications,
pages 151–165. Springer, 2001.

[25] D. Gratzer, J. Sterling, and L. Birkedal. Implementing a modal dependent type
theory. Proceedings of the ACM on Programming Languages, 3(ICFP):1–29, 2019.

[26] N. D. Jones. An introduction to partial evaluation. ACM Computing Surveys
(CSUR), 28(3):480–503, 1996.

[27] G. A. Kavvos. Modalities, cohesion, and information flow. Proc. ACM Program.
Lang., 3(POPL):20:1–20:29, 2019.

[28] Y. Lafont. The linear abstract machine. Theor. Comput. Sci., 59:157–180, 1988.

[29] S. Lindley. Normalisation by evaluation in the compilation of typed functional
programming languages. 2005.

18

Bibliography

[30] P. Martin-Löf. An intuitionistic theory of types: Predicative part. In Studies
in Logic and the Foundations of Mathematics, volume 80, pages 73–118. Elsevier,
1975.

[31] S. Martini and A. Masini. A computational interpretation of modal proofs. In
Proof theory of modal logic (Hamburg, 1993), volume 2 of Appl. Log. Ser., pages
213–241. Kluwer Acad. Publ., Dordrecht, 1996.

[32] K. Miyamoto and A. Igarashi. A modal foundation for secure information flow.
In Workshop on Foundations of Computer Security, pages 187–203, 2004.

[33] S. Najd, S. Lindley, J. Svenningsson, and P.Wadler. Everything old is new again:
quoted domain-specific languages. In Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, pages 25–36, 2016.

[34] R. O’Connor. Simplicity: A new language for blockchains. In Proceedings of
the 2017 Workshop on Programming Languages and Analysis for Security, pages
107–120, 2017.

[35] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: a hard real-time runtime
monitor. In International Conference on Runtime Verification, pages 345–359.
Springer, 2010.

[36] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-
flow security in haskell. ACM Sigplan Notices, 44(2):13–24, 2008.

[37] J. Svenningsson and E. Axelsson. Combining deep and shallow embedding of
domain-specific languages. Comput. Lang. Syst. Struct., 44:143–165, 2015.

[38] N. Valliappan. Be My Guest: Normalizing and Compiling Programs Using a Host
Language. PhD thesis, Chalmers Tekniska Hogskola (Sweden), 2020.

[39] N. Valliappan, S. Mirliaz, E. L. Vesga, and A. Russo. Towards adding variety
to simplicity. In International Symposium on Leveraging Applications of Formal
Methods, pages 414–431. Springer, 2018.

19

Papers

A
Normalization for Fitch-Style Modal Cal-
culi

Abstract. Fitch-style modal lambda calculi enable programmingwith necessity
modalities in a typed lambda calculus by extending the typing context with a
delimiting operator that is denoted by a lock. The addition of locks simpli-
fies the formulation of typing rules for calculi that incorporate different modal
axioms, but each variant demands different, tedious and seemingly ad hoc syn-
tactic lemmas to prove normalization. In this work, we take a semantic ap-
proach to normalization, called normalization by evaluation (NbE), by leverag-
ing the possible-world semantics of Fitch-style calculi to yield a more modular
approach to normalization. We show that NbE models can be constructed for
calculi that incorporate the K, T and 4 axioms of modal logic, as suitable in-
stantiations of the possible-world semantics. In addition to existing results that
handle β-equivalence, our normalization result also considers η-equivalence for
these calculi. Our key results have beenmechanized in the proof assistant Agda.
Finally, we showcase several consequences of normalization for proving meta-
theoretic properties of Fitch-style calculi as well as programming-language ap-
plications based on different interpretations of the necessity modality.

23

1 INTRODUCTION
In type systems, a modality can be broadly construed as a unary type constructor
with certain properties. Type systems with modalities have found a wide range of
applications in programming languages to specify properties of a program in its
type. In this work, we study typed lambda calculi equipped with a necessity modality
(denoted by ◻) formulated in the so-called Fitch style.

The necessity modality originates from modal logic, where the most basic in-
tuitionistic modal logic IK (for “intuitionistic” and “Kripke”) extends intuitionistic
propositional logic with a unary connective ◻, the necessitation rule (if · ⊢ 𝐴 then
Γ ⊢ ◻𝐴) and the K axiom (◻(𝐴⇒𝐵)⇒◻𝐴⇒◻𝐵). With the addition of further modal
axioms T (◻𝐴 ⇒ 𝐴) and 4 (◻𝐴 ⇒ ◻◻𝐴) to IK, we obtain richer logics IT (adding
axiom T), IK4 (adding axiom 4), and IS4 (adding both T and 4). Type systems with
necessity modalities based on IK and IS4 have found applications in partial evaluation
and staged computation [14, 15], information-flow control [31], and recovering purity
in an effectful language [11]. While type systems based on IT and IK4 do not seem to
have any prior known programming applications, they are nevertheless interesting
as objects of study that extend IK towards IS4.

Fitch-style modal lambda calculi [9, 12, 29] feature necessity modalities in a typed
lambda calculus by extending the typing context with a delimiting “lock” operator
(denoted by µ). In this paper, we consider the family of Fitch-style modal lambda
calculi that correspond to the logics IK, IT, IK4, and IS4. These calculi extend the sim-
ply-typed lambda calculus (STLC) with a type constructor◻, along with introduction
and elimination rules for ◻ types formulated using the µ operator. For instance, the
calculus λIK, which corresponds to the logic IK, extends STLC with Rules ◻-Intro
and λIK/◻-Elim, as summarized in Fig. 1. The rules for 𝜆-abstraction and function
application are formulated in the usual way—but note the modified variable rule Var!

Ty 𝐴 F . . . | ◻𝐴 Ctx Γ F · | Γ, 𝑥 : 𝐴 | Γ,µ

Var

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴
µ ∉ Γ′

◻-Intro
Γ,µ ⊢ 𝑡 : 𝐴

Γ ⊢ box 𝑡 : ◻𝐴
λIK/◻-Elim

Γ ⊢ 𝑡 : ◻𝐴
Γ,µ, Γ′ ⊢ unboxλIK 𝑡 : 𝐴

µ ∉ Γ′

Fig. 1. Typing rules for λIK (omitting 𝜆-abstraction and application)

The equivalence of terms in STLC is extended by Fitch-style calculi with the follow-
ing rules for ◻ types, where the former states the 𝛽- (or computational) equivalence,
and the latter states a type-directed 𝜂- (or extensional) equivalence.◻-𝛽

unbox (box 𝑡) ∼ 𝑡

◻-𝜂
Γ ⊢ 𝑡 : ◻𝐴

𝑡 ∼ box (unbox 𝑡)
We are interested in the problem of normalizing terms with respect to these equiv-
alences. Traditionally, terms in a calculus are normalized by rewriting them using
rewrite rules formulated from these equivalences, and a term is said to be in normal
form when it cannot be rewritten further. For example, we may formulate a rewrite

Normalization for Fitch-Style Modal Calculi

25

rule unbox (box 𝑡) ↦→ 𝑡 by orienting the ◻-𝛽 equivalence from left to right. This
naive approach to formulating a rewrite rule, however, is insufficient for the ◻-𝜂
rule since normalizing with a rewrite rule 𝑡 ↦→ box (unbox 𝑡) (for Γ ⊢ 𝑡 : ◻𝐴) does
not terminate as it can be applied infinitely many times. It is presumably for this
reason that existing normalization results [12] for some of these calculi only consider
𝛽-equivalence.

While it may be possible to carefully formulate a more complex set of rewrite rules
that take the context of application into consideration to guarantee termination (as
done, for example, by Jay and Ghani [25] for function and product types), the situation
is further complicated for Fitch-style calculi by the fact that we must repeat such
syntactic rewriting arguments separately for each calculus under consideration. The
calculi λIT, λIK4, and λIS4 differ from λIK only in the◻-elimination rule, as summarized
in Fig. 2. In spite of having identical syntax and term equivalences, each calculus

λIT/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ, Γ′ ⊢ unboxλIT 𝑡 : 𝐴
#µ (Γ′) ≤ 1

λIK4/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ,µ, Γ′ ⊢ unboxλIK4 𝑡 : 𝐴

λIS4/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ, Γ′ ⊢ unboxλIS4 𝑡 : 𝐴

Fig. 2. ◻-elimination rules for λIT, λIK4, and λIS4

demands different, tedious and seemingly ad hoc syntactic renaming lemmas [12,
Lemmas 4.1 and 5.1] to prove normalization.

In this paper, we take a semantic approach to normalization, called normalization
by evaluation (NbE) [8]. NbE bypasses rewriting entirely, and instead normalizes
terms by evaluating them in a suitable semantic model and then reifying values in the
model as normal forms. For Fitch-style calculi, NbE can be developed by leveraging
their possible-world semantics. To this end, we identify the parameters of the possible-
world semantics for the calculi under consideration, and show that NbE models can
be constructed by instantiating those parameters. The NbE approach exploits the
semantic overlap of the Fitch-style calculi in the possible-world semantics and isolates
their differences to a specific parameter that determines the modal fragment, thus
enabling the reuse of the evaluation machinery and many lemmas proved in the
process.

In Section 2, we begin by providing a brief overview of the main idea underlying
this paper. We discuss the uniform interpretation of types for four Fitch-style calculi
(λIK, λIT, λIK4 and λIS4) in possible-world models and outline how NbE models can be
constructed as instances. The reification mechanism that enables NbE is performed
alike for all four calculi. In Section 3, we construct an NbE model for λIK that yields
a correct normalization algorithm, and then show how NbE models can also be
constructed for λIS4, and for λIT and λIK4 by slightly varying the instantiation. The

Modular Normalization with Types

26

calculi λIK and λIS4 and their normalization algorithms have been implemented and
verified correct [41] in the proof assistant Agda [3].

NbE models and proofs of normalization in general have several useful conse-
quences for term calculi. In Section 4, we show how NbE models and the accompa-
nying normalization algorithm can be used to prove meta-theoretic properties of
Fitch-style calculi including completeness, decidability, and some standard results
in modal logic in a constructive manner. In Section 5, we discuss applications of our
development to specific interpretations of the necessity modality in programming
languages, and show (but do not mechanize) how application-specific properties that
typically require semantic intervention can be proved syntactically. We show that
properties similar to capability safety, noninterference, and binding-time correctness
can be proved syntactically using normal forms of terms.

2 MAIN IDEA
The main idea underlying this paper is that normalization can be achieved in a
modular fashion for Fitch-style calculi by constructing NbE models as instances of
their possible-world semantics. In this section, we observe that Fitch-style calculi
can be interpreted in the possible-world semantics for intuitionistic modal logic with
a minor refinement that accommodates the µ operator, and give a brief overview of
how we construct NbE models as instances.

Possible-World Semantics. The possible-world semantics for intuitionistic modal
logic [10] is parameterized by a frame 𝐹 and a valuation𝑉𝜄 . A frame 𝐹 is a triple (𝑊,𝑅𝑖
, 𝑅𝑚) that consists of a type𝑊 ofworlds alongwith two binary accessibility relations𝑅𝑖
(for “intuitionistic”) and 𝑅𝑚 (for “modal”) on worlds that are required to satisfy certain
conditions. An element𝑤 :𝑊 can be thought of as a representation of the “knowledge
state” about some “possible world” at a certain point in time. Then,𝑤 𝑅𝑖 𝑤

′ represents
an increase in knowledge from 𝑤 to 𝑤 ′, and 𝑤 𝑅𝑚 𝑣 represents a possible passage
from 𝑤 to 𝑣 . A valuation 𝑉𝜄 , on the other hand, is a family of types 𝑉𝜄,𝑤 indexed
by 𝑤 : 𝑊 along with functions wk𝜄,𝑤,𝑤′ : 𝑉𝜄,𝑤 → 𝑉𝜄,𝑤′ whenever 𝑤 𝑅𝑖 𝑤 ′. An
element 𝑝 : 𝑉𝜄,𝑤 can be thought of as “evidence” for (the knowledge of) the truth
of the atomic proposition 𝜄 at the world𝑤 . The requirement for functions wk𝜄,𝑤,𝑤′

enforces that the knowledge of the truth of 𝜄 at𝑤 is preserved as time moves on to𝑤 ′,
and is neither forgotten nor contradicted by any new evidence learned at𝑤 ′. There
are no such requirements on a valuation 𝑉𝜄 with respect to the modal accessibility
relation 𝑅𝑚 .
Given a frame (𝑊,𝑅𝑖 , 𝑅𝑚) and a valuation 𝑉𝜄 , we interpret (object) types 𝐴 in

any Fitch-style calculus as families of (meta) types ⟦𝐴⟧𝑤 indexed by worlds𝑤 :𝑊 ,
following the work by Fischer-Servi [18], Ewald [16], Plotkin and Stirling [35], and
Simpson [39] as below:

⟦𝜄 ⟧𝑤 = 𝑉𝜄,𝑤
⟦𝐴⇒ 𝐵⟧𝑤 = ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′

⟦◻𝐴 ⟧𝑤 = ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤
′ → ∀𝑣 .𝑤 ′ 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣

The nonmodal type formers are interpreted as in the Kripke semantics for intui-
tionistic propositional logic: the base type 𝜄 is interpreted using the valuation 𝑉𝜄 , and

Normalization for Fitch-Style Modal Calculi

27

function types𝐴⇒𝐵 at𝑤 :𝑊 are interpreted as families of functions ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′

indexed by 𝑤 ′ :𝑊 such that 𝑤 𝑅𝑖 𝑤
′. Recall that the generalization to families is

necessary for the interpretation of function types to be sound.
As for the interpretation of modal types, at 𝑤 :𝑊 the types ◻𝐴 are interpreted

by families of elements ⟦𝐴⟧𝑣 indexed by those 𝑣 :𝑊 that are accessible from𝑤 via
some𝑤 ′ :𝑊 such that𝑤 𝑅𝑖 𝑤

′ and𝑤 ′ 𝑅𝑚 𝑣 . In other words, ◻𝐴 is true at a world𝑤
if 𝐴 is necessarily true in “the future”, whichever concrete possibility this may turn
out to be. We remark that the interpretation of ◻𝐴 as ∀𝑣 .𝑤 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣 , as in
classical modal logic without the first quantifier ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′, requires additional
conditions [10, 39] on frames that (some of) the NbE models we construct do not
satisfy.
In order to extend the possible-world semantics of intuitionistic modal logic to

Fitch-style calculi, we must also provide an interpretation of contexts and the µ
operator, which is unique to the Fitch style, in particular:

⟦· ⟧𝑤 = ⊤
⟦Γ, 𝐴⟧𝑤 = ⟦Γ⟧𝑤 × ⟦𝐴⟧𝑤
⟦Γ,µ⟧𝑤 =

∑
𝑢 ⟦Γ⟧𝑢 × 𝑢 𝑅𝑚 𝑤

The empty context · and the context extension Γ, 𝐴 of a context Γ with a type 𝐴
are interpreted as in the Kripke semantics for STLC by the terminal family and the
Cartesian product of the families ⟦Γ⟧ and ⟦𝐴⟧, respectively. While the interpretation
of types ◻𝐴 can be understood as a statement about the future, the interpretation of
contexts Γ,µ can be understood as a dual statement about the past: Γ,µ is true at a
world𝑤 if Γ is true at some world 𝑢 for which𝑤 is a possibility, i.e. 𝑢 𝑅𝑚 𝑤 .

With the interpretation of contexts Γ and types 𝐴 as (𝑊,𝑅𝑖)-indexed families ⟦Γ⟧
and ⟦𝐴⟧ at hand, the interpretation of terms 𝑡 : Γ ⊢ 𝐴, also known as evaluation, in a
possible-world model is given by a function ⟦−⟧ : Γ ⊢ 𝐴 → (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤)
as follows. Clouston [12] shows that the interpretation of STLC in Cartesian closed
categories (CCCs) extends to an interpretation of Fitch-style calculi in any CCC
equipped with an adjunction by interpreting ◻ and µ by the right and left adjoint as
well as box and unbox using the right and left adjuncts, respectively. The key idea
here is that, correspondingly, the interpretation of terms in the nonmodal fragment
of Fitch-style calculi using the familiar CCC structure on (𝑊,𝑅𝑖)-indexed families
extends to the modal fragment: the interpretation of ◻ in a possible-world model
has a left adjoint that is denoted by our interpretation of µ. In summary, the possible-
world interpretation of Fitch-style calculi can be given by instantiation of Clouston’s
generic interpretation in CCCs equipped with an adjunction.

Constructing NbEModels as Instances. To construct an NbEmodel for Fitch-style cal-
culi, we must construct a possible-world model with a function quote : (∀𝑤. ⟦Γ⟧𝑤 →
⟦𝐴⟧𝑤) → Γ ⊢nf 𝐴 that inverts the denotation (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤) of a term to a
derivation Γ ⊢nf 𝐴 in normal form. The normal forms for the modal fragment of λIK
are defined below, where Γ ⊢ne 𝐴 denotes a special case of normal forms known as

Modular Normalization with Types

28

neutral elements.
Nf/◻-Intro
Γ,µ ⊢nf 𝑡 : 𝐴

Γ ⊢nf box 𝑡 : ◻𝐴
λIK/Ne/◻-Elim

Γ ⊢ne 𝑡 : ◻𝐴
Γ,µ, Γ′ ⊢ne unboxλIK 𝑡 : 𝐴

µ ∉ Γ′

The normal forms for λIT, λIK4, and λIS4 are defined similarly by varying the elimina-
tion rule as in their term typing rules in Fig. 2.
Following the work on NbE for STLC with possible-world1 models [13], we in-

stantiate the parameters that define possible-world models for Fitch-style calculi
as follows: we pick contexts for𝑊 , order-preserving embeddings (sometimes called
“weakenings”, defined in the next section) Γ ≤ Γ′ for Γ 𝑅𝑖 Γ

′, and neutral deriva-
tions Γ ⊢ne 𝜄 as the valuation 𝑉𝜄,Γ . It remains for us to instantiate the parameter 𝑅𝑚
and show that this model supports the quote function.

The instantiation of the modal parameter 𝑅𝑚 in the possible-world semantics varies
for each calculus and captures the difference between them. Recall that the syntaxes
of the four calculi only differ in their elimination rules for ◻ types. When viewed
through the lens of the possible-world semantics, this difference can be generalized
as follows: ◻-Elim

Δ ⊢ 𝑡 : ◻𝐴
Γ ⊢ unbox 𝑡 : 𝐴 (Δ ◁ Γ)

We generalize the relationship between the context in the premise and the context
in the conclusion using a generic modal accessibility relation ◁ between contexts.
When viewed as a candidate for instantiating the 𝑅𝑚 relation, this rule states that if◻𝐴 is derivable in some past world Δ, then we may derive 𝐴 in the current world Γ.
The various ◻-elimination rules for Fitch-style calculi can be viewed as instances of
this generalized rule, where we define ◁ in accordance with◻-elimination rule of the
calculus under consideration. For example, for λIK, we observe that the context of the
premise in Rule λIK/◻-Elim is Γ and that of the conclusion is Γ,µ, Γ′ such that µ ∉ Γ′,
and thus define Δ ◁λIK Γ as ∃Δ′ .µ ∉ Δ′ ∧ Γ = Δ,µ,Δ′. Similarly, we define Δ ◁λIS4 Γ
as ∃Δ′ . Γ = Δ,Δ′ for λIS4, and follow this recipe for λIT and λIK4. Accordingly, we
instantiate the 𝑅𝑚 parameter in the NbE model with the corresponding definition of
◁ in the calculus under consideration.

A key component of implementing the quote function in NbE models is reification,
which is implemented by a family of functions reify𝐴 : ∀Γ. ⟦𝐴⟧Γ → Γ ⊢nf 𝐴 indexed
by a type 𝐴. While its implementation for the simply-typed fragment follows the
standard, for the modal fragment we are required to give an implementation of
reify◻𝐴 : ∀Γ. ⟦◻𝐴⟧Γ → Γ ⊢nf ◻𝐴. To reify a value of ⟦◻𝐴⟧Γ , we first observe
that ⟦◻𝐴⟧Γ = ∀Γ′ . Γ ≤ Γ′ → ∀Δ. Γ′ ◁ Δ → ⟦𝐴⟧Δ by definition of ⟦−⟧ and
the instantiations of 𝑅𝑖 with ≤ and 𝑅𝑚 with ◁. By picking Γ for Γ′ and Γ,µ for
Δ, we get ⟦𝐴⟧Γ,µ since ≤ is reflexive and it can be shown that Γ ◁ Γ,µ holds for
the calculi under consideration. By reifying the value ⟦𝐴⟧Γ,µ recursively, we get
a normal form Γ,µ ⊢nf 𝑛 : 𝐴, which can be used to construct the desired normal
form Γ ⊢nf box𝑛 : ◻𝐴 using the rule Nf/◻-Intro.
1also called “Kripke” or “Kripke-style”

Normalization for Fitch-Style Modal Calculi

29

3 POSSIBLE-WORLD SEMANTICS AND NbE
In this section, we elaborate on the previous section by defining possible-world
models and showing that Fitch-style calculi can be interpreted soundly in these
models. Following this, we outline the details of constructing NbEmodels as instances.
We begin with the calculus λIK, and then show how the same results can be achieved
for the other calculi.

Before discussing a concrete calculus, we present some of their commonalities.

Types, Contexts and Order-Preserving Embeddings. The grammar of types and typing
contexts for Fitch-style is the following.

Ty 𝐴 F 𝜄 | 𝐴⇒ 𝐵 | ◻𝐴 Ctx Γ F · | Γ, 𝐴 | Γ,µ
Types are generated by an uninterpreted base type 𝜄, function types 𝐴 ⇒ 𝐵, and
modal types ◻𝐴, and typing contexts are “snoc” lists of types and locks.

We define the relation of order-preserving embeddings (OPE) on typing contexts in
Fig. 3. An OPE Γ ≤ Γ′ embeds the context Γ into another context Γ′ while preserving
the order of types and the order and number of locks in Γ.

base : · ≤ · 𝑜 : Γ ≤ Γ′

drop𝑜 : Γ ≤ Γ′, 𝐴

𝑜 : Γ ≤ Γ′

keep𝑜 : Γ, 𝐴 ≤ Γ′, 𝐴

𝑜 : Γ ≤ Γ′

keepµ 𝑜 : Γ,µ ≤ Γ′,µ

Fig. 3. Order-preserving embeddings

3.1 The Calculus λIK
3.1.1 Terms, Substitutions and Equational Theory. To define the intrinsically-typed
syntax and equational theory of λIK, we first define a modal accessibility relation on
contexts Δ ◁λIK Γ, which expresses that context Γ extends Δ,µ to the right without
adding locks. Note that Δ ◁λIK Γ exactly when ∃Δ′ .µ ∉ Δ′ ∧ Γ = Δ,µ,Δ′.

nil : Γ ◁λIK Γ,µ
𝑒 : Δ ◁λIK Γ

var 𝑒 : Δ ◁λIK Γ, 𝐴

Fig. 4. Modal accessibility relation on contexts (λIK)

Fig. 5 presents the intrinsically-typed syntax of λIK. We will use both Γ ⊢ 𝑡 : 𝐴 and
𝑡 : Γ ⊢ 𝐴 to say that 𝑡 denotes an (intrinsically-typed) term of type𝐴 in context Γ, and
similarly for substitutions, which will be defined below. Instead of named variables as
in Fig. 1, variables are defined using De Bruijn indices in a separate judgement Γ ⊢var
𝐴 . The introduction and elimination rules for function types are like those in STLC,
and the introduction rule for the type ◻𝐴 is similar to that of Fig. 1. The elimination

Modular Normalization with Types

30

Var-Zero
Γ, 𝐴 ⊢var zero : 𝐴

Var-Succ
Γ ⊢var 𝑣 : 𝐴

Γ, 𝐵 ⊢var succ 𝑣 : 𝐴

Var
Γ ⊢var 𝑣 : 𝐴
Γ ⊢ var 𝑣 : 𝐴

⇒-Intro
Γ, 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ 𝜆 𝑡 : 𝐴⇒ 𝐵

⇒-Elim
Γ ⊢ 𝑡 : 𝐴⇒ 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ app 𝑡 𝑢 : 𝐵

◻-Intro
Γ,µ ⊢ 𝑡 : 𝐴

Γ ⊢ box 𝑡 : ◻𝐴
λIK/◻-Elim
Δ ⊢ 𝑡 : ◻𝐴 𝑒 : Δ ◁λIK Γ

Γ ⊢ unboxλIK 𝑡 𝑒 : 𝐴

Fig. 5. Intrinsically-typed terms of λIK

rule λIK/◻-Elim is defined using the modal accessibility relation Δ ◁λIK Γ which relates
the contexts in the premise and the conclusion, respectively. This relation replaces
the side condition (µ ∉ Γ′) in Fig. 1 and other ◻-elimination rules in Sections 1
and 2. Note that formulating the rule for the term unboxλIK with 𝑒 : Δ ◁λIK Γ as a
second premise is in sharp contrast to Clouston [12, Fig. 1] where the relation is
not mentioned in the term but formulated as the side condition Γ = Δ,µ, Γ′ for some
lock-free Γ′.

A term Γ ⊢ 𝑡 : 𝐴 can be weakened, which is a special case of renaming, with an OPE
(see Fig. 3) using a function wk : Γ ≤ Γ′ → Γ ⊢ 𝐴 → Γ′ ⊢ 𝐴. Given an OPE 𝑜 : Γ ≤ Γ′,
renaming the term using wk yields a term Γ′ ⊢ wk 𝑜 𝑡 : 𝐴 in the weaker context Γ′.
The unit element for wk is the identity OPE id≤ : Γ ≤ Γ, i.e. wk id≤ 𝑡 = 𝑡 . Renaming
arises naturally when evaluating terms and in specifying the equational theory (e.g.
in the 𝜂 rule of function type).

Γ ⊢s empty : · Γ ⊢s 𝑠 : Δ Γ ⊢ 𝑡 : 𝐴
Γ ⊢s ext 𝑠 𝑡 : Δ, 𝐴

Θ ⊢s 𝑠 : Δ 𝑒 : Θ ◁λIK Γ

Γ ⊢s extµ 𝑠 𝑒 : Δ,µ

Fig. 6. Substitutions for λIK

Substitutions for λIK are inductively defined in Fig. 6. A judgement Γ ⊢s 𝑠 : Δ
denotes a substitution for a context Δ in the context Γ. Applying a substitution
to a term Δ ⊢ 𝑡 : 𝐴, i.e. subst 𝑠 𝑡 : Γ ⊢ 𝐴, yields a term in the context Γ. The
substitution ids : Γ ⊢s Γ denotes the identity substitution, which exists for all Γ. As
usual, it can be shown that terms are closed under the application of a substitution,
and that it preserves the identity, i.e. subst ids 𝑡 = 𝑡 . Substitutions are also closed
under renaming and this operation preserves the identity as well.
The equational theory for λIK, omitting congruence rules, is specified in Fig. 7.

As discussed earlier, λIK extends the usual rules in STLC (Rules ⇒-𝛽 and ⇒-𝜂) with
rules for the ◻ type (Rules ◻-𝛽 and ◻-𝜂). The function factor : Δ ◁λIK Γ → Δ,µ ≤ Γ,
in Rule ◻-𝛽, maps an element of the modal accessibility relation 𝑒 : Δ ◁λIK Γ to an
OPE Δ,µ ≤ Γ. This is possible because the context Γ does not have any lock to the
right of Δ,µ.

Normalization for Fitch-Style Modal Calculi

31

⇒-𝛽
Γ, 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ app (𝜆 𝑡) 𝑢 ∼ subst (ext ids 𝑢) 𝑡
⇒-𝜂

Γ ⊢ 𝑡 : 𝐴⇒ 𝐵

Γ ⊢ 𝑡 ∼ 𝜆 (app (wk (drop id≤) 𝑡) (var zero))◻-𝛽
Δ,µ ⊢ 𝑡 : 𝐴 𝑒 : Δ ◁λIK Γ

Γ ⊢ unboxλIK (box 𝑡) 𝑒 ∼ wk (factor 𝑒) 𝑡

◻-𝜂
Γ ⊢ 𝑡 : ◻𝐴

Γ ⊢ 𝑡 ∼ box (unboxλIK 𝑡 nil)

Fig. 7. Equational theory for λIK

3.1.2 Possible-World Semantics. A possible-world model is defined using the no-
tion of a possible-world frame as below. We work in a constructive type-theoretic
metalanguage, and denote the universe of types in this language by Type.

Definition 1 (Possible-world frame). A frame 𝐹 is given by a triple (𝑊,𝑅𝑖 , 𝑅𝑚)
consisting of a type𝑊 : Type and two relations 𝑅𝑖 and 𝑅𝑚 :𝑊 ×𝑊 → Type on𝑊
such that the following conditions are satisfied:

• 𝑅𝑖 is reflexive and transitive
• if 𝑤 𝑅𝑚 𝑣 and 𝑣 𝑅𝑖 𝑣

′ then there exists some 𝑤 ′ :𝑊 such that 𝑤 𝑅𝑖 𝑤
′ and

𝑤 ′ 𝑅𝑚 𝑣 ′; this factorization condition can be pictured as an implication 𝑅𝑚 ;
𝑅𝑖 ⊆ 𝑅𝑖 ; 𝑅𝑚 or diagrammatically as follows:

𝑤 ′ 𝑣 ′

𝑤 𝑣

𝑅𝑚

𝑅𝑖

𝑅𝑚

𝑅𝑖

(note that neither𝑤 ′ nor the proofs of relatedness are required to be unique,
nor will they all be in the frames that we will consider)

Definition 2 (Possible-world model). A possible-world modelM is given by a tu-
ple (𝐹,𝑉) consisting of a frame 𝐹 (see Definition 1) and a𝑊 -indexed family𝑉𝜄 :𝑊 →
Type (called the valuation of the base type) such that ∀𝑤,𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → 𝑉𝜄,𝑤 → 𝑉𝜄,𝑤′ .

We have omitted coherence conditions from these definitions for readability. Those
conditions stem from the proof relevance of the relations and predicates involved.
They will be satisfied by the models we will construct, and will also be given below
for completeness.

The types and typing contexts in λIK are interpreted in a possible-world model via
the interpretation functions ⟦−⟧ defined in Section 2. To evaluate terms, we must first
prove the followingmonotonicity lemma. This lemma is well-known as a requirement

Modular Normalization with Types

32

to give a sound interpretation of the function type in an arbitrary possible-world
model, and can be thought of as the semantic generalization of renaming in terms.

Lemma 1 (Monotonicity). In every possible-world model M, for every type 𝐴 and
worlds𝑤 and𝑤 ′, we have a function wk𝐴 : 𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤 → ⟦𝐴⟧𝑤′ . And similarly,
for every context Γ, a function wkΓ : 𝑤 𝑅𝑖 𝑤

′ → ⟦Γ⟧𝑤 → ⟦Γ⟧𝑤′ .

We evaluate terms in λIK in a possible-world model as follows.
⟦−⟧ : Γ ⊢ 𝐴 → (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤)
⟦var 𝑣 ⟧𝛾 = lookup 𝑣 𝛾
⟦𝜆 𝑡 ⟧𝛾 = 𝜆𝑖. 𝜆𝑎. ⟦𝑡⟧ (wk 𝑖 𝛾, 𝑎)
⟦app 𝑡 𝑢 ⟧𝛾 = (⟦𝑡⟧𝛾) id≤ (⟦𝑢⟧𝛾)
⟦box 𝑡 ⟧𝛾 = 𝜆𝑖. 𝜆𝑚. ⟦𝑡⟧ (wk 𝑖 𝛾,𝑚)
⟦unboxλIK 𝑡 𝑒⟧𝛾 = ⟦𝑡⟧𝛿 id≤𝑚

where (𝛿,𝑚) = trimλIK 𝛾 𝑒

The evaluation of terms in the simply-typed fragment is standard, and resembles
the evaluator of STLC. Variables are interpreted by a lookup function that projects
values from an environment, and 𝜆-abstraction and application are evaluated using
their semantic counterparts. To evaluate 𝜆-abstraction, we must construct a semantic
function ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′ using the given term Γ, 𝐴 ⊢ 𝑡 : 𝐵 and
environment 𝛾 : ⟦Γ⟧𝑤 . We achieve this by recursively evaluating 𝑡 in an environment
that extends 𝛾 appropriately using the semantic arguments 𝑖 : 𝑤 𝑅𝑖 𝑤

′ and 𝑎 : ⟦𝐴⟧𝑤′ .
We use the monotonicity lemma to “transport” ⟦Γ⟧𝑤 to ⟦Γ⟧𝑤′ , and construct an
environment of type ⟦Γ⟧𝑤′ ×⟦𝐴⟧𝑤′ for recursively evaluating 𝑡 , which produces the
desired result of type ⟦𝐵⟧𝑤′ . Application is evaluated by simply recursively evaluating
the applied terms and applying them in the semantics with a value id≤ : 𝑤 𝑅𝑖 𝑤 ,
which is available since 𝑅𝑖 is reflexive.

In the modal fragment, to evaluate the term Γ ⊢ box 𝑡 : ◻𝐴 with 𝛾 : ⟦Γ⟧𝑤 , we
must construct a function of type ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → ∀𝑣 .𝑤 ′ 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣 . Using
the semantic arguments 𝑖 : 𝑤 𝑅𝑖 𝑤 ′ and 𝑚 : 𝑤 ′ 𝑅𝑚 𝑣 , we recursively evaluate
the term Γ,µ ⊢ 𝑡 : 𝐴 in the extended environment (wk 𝑖 𝛾,𝑚) : ⟦Γ,µ⟧𝑣 , since
⟦Γ,µ⟧𝑣 =

∑
𝑤′ ⟦Γ⟧𝑤′ ×𝑤 ′ 𝑅𝑚 𝑣 . On the other hand, the term Γ ⊢ unboxλIK 𝑡 𝑒 :

𝐴 with 𝑒 : Δ ◁λIK Γ and Δ ⊢ 𝑡 : ◻𝐴, for some Δ, must be evaluated with an
environment 𝛾 : ⟦Γ⟧𝑤 . To recursively evaluate the term Δ ⊢ 𝑡 : ◻𝐴, we must first
discard the part of the environment 𝛾 that substitutes the types in the extension of
Δ,µ. This is achieved using the function trimλIK : ⟦Γ⟧𝑤 → Δ ◁λIK Γ → ⟦Δ,µ⟧𝑤 that
projects 𝛾 to produce an environment 𝛿 : ⟦Δ⟧𝑣′ and a value𝑚 : 𝑣 ′ 𝑅𝑚 𝑤 . We evaluate
𝑡 with 𝛿 and apply the resulting function of type ∀𝑣 . 𝑣 𝑅𝑖 𝑣 ′ → ∀𝑤. 𝑣 ′ 𝑅𝑚 𝑤 → ⟦𝐴⟧𝑤
to id≤ and𝑚 to return the desired result.

We state the soundness of λIK with respect to the possible-world semantics before
we instantiate it with the NbE model that we will construct in the next subsection. We
note that the soundness proof relies on the possible-world models to satisfy coherence
conditions that we have omitted from Definitions 1 and 2 but that will be satisfied by
the NbE models. Specifically,𝑊 and 𝑅𝑖 together with the transitivity and reflexivity
proofs transi and refli for 𝑅𝑖 need to form a category 𝒲, i.e. transi needs to be asso-
ciative and refli needs to be a unit for transi ; the proofs of the factorization condition

Normalization for Fitch-Style Modal Calculi

33

need to satisfy the functoriality laws factori𝑚 (refli 𝑣) = refli𝑤 , factorm𝑚 (refli 𝑣) =
𝑚, factori𝑚 (transi 𝑖 𝑗) = transi (factori𝑚 𝑖) (factori𝑚′ 𝑗) and factorm𝑚 (transi 𝑖 𝑗) =
factorm𝑚′ 𝑗 where𝑚′ B factorm𝑚 𝑖 : 𝑤 ′ 𝑅𝑚 𝑣 ′ denotes the modal accessibility proof
produced by the first factorization of𝑚 : 𝑤 𝑅𝑚 𝑣 and 𝑖 : 𝑣 𝑅𝑖 𝑣

′; and 𝑉𝜄 together
with the monotonicity proof wk𝜄 needs to form a functor on the category 𝒲, i.e.
wk𝜄 (refli𝑤) needs to be equal to the identity function on 𝑉𝜄,𝑤 and wk𝜄 (transi 𝑖 𝑗)
needs to be equal to the composite wk𝜄 𝑗 ◦ wk𝜄 𝑖 .
Theorem 2. Let M be any possible-world model (see Definition 2). If two terms 𝑡

and 𝑢 : Γ ⊢ 𝐴 of λIK are equivalent (see Fig. 7) then the functions ⟦𝑡⟧ and ⟦𝑢⟧ :
∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤 as determined by M are equal.

Proof. Let M be a possible-world model with underlying frame 𝐹 = (𝑊,𝑅𝑖 , 𝑅𝑚).
Denote the category whose objects are worlds 𝑤 : 𝑊 and whose morphisms are
proofs 𝑖 : 𝑤 𝑅𝑖 𝑤

′ by C. The frame 𝐹 can be seen as determining an adjunction µ ⊣ ◻
on the category of presheaves indexed by the category C, which is moreover well-
known to be Cartesian closed. The interpretation ⟦−⟧ can then be seen as factoring
through the categorical semantics described in Clouston [12, Section 2.3], of which
the category of presheaves over C is an instance by virtue of its Cartesian closure
and equipment with an adjunction. We can therefore conclude by applying Clouston
[12, Theorem 2.8 (Categorical Soundness) and remark below that]. □

3.1.3 NbE Model. The normal forms of terms in λIK are defined along with neutral
elements in a mutually recursive fashion by the judgements Γ ⊢nf 𝐴 and Γ ⊢ne 𝐴,
respectively, in Fig. 8. Intuitively, a normal form may be thought of as a value, and a
neutral element may be thought of as a “stuck” computation. We extend the standard
definition of normal forms and neutral elements in STLC with Rules Nf/◻-Intro
and λIK/Ne/◻-Elim.

Ne/Var
Γ ⊢var 𝑣 : 𝐴

Γ ⊢ne var 𝑣 : 𝐴

Nf/Up
Γ ⊢ne 𝑛 : 𝜄

Γ ⊢nf up𝑛 : 𝜄

Nf/⇒-Intro
Γ, 𝐴 ⊢nf 𝑛 : 𝐵

Γ ⊢nf 𝜆 𝑛 : 𝐴⇒ 𝐵

Ne/⇒-Elim
Γ ⊢ne 𝑛 : 𝐴⇒ 𝐵 Γ ⊢nf 𝑚 : 𝐴

Γ ⊢ne app𝑛𝑚 : 𝐵

Nf/◻-Intro
Γ,µ ⊢nf 𝑛 : 𝐴

Γ ⊢nf box𝑛 : ◻𝐴
λIK/Ne/◻-Elim
Δ ⊢ne 𝑛 : ◻𝐴 𝑒 : Δ ◁λIK Γ

Γ ⊢ne unboxλIK 𝑛 𝑒 : 𝐴

Fig. 8. Normal forms and neutral elements in λIK

Recall that an NbE model for a given calculus C is a particular kind of modelM
that comes equipped with a function quote : M(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢nf 𝐴 satisfying 𝑡 ∼
quote ⟦𝑡⟧ for all terms 𝑡 : Γ ⊢ 𝐴 where ⟦−⟧ denotes the generic evaluation function
for C.

Modular Normalization with Types

34

Using the relations defined in Figs. 3 and 4, we construct an NbE model for λIK by
instantiating the parameters that define a possible-world model as follows.

• Worlds as contexts:𝑊 = Ctx
• Relation 𝑅𝑖 as order-preserving embeddings: Γ 𝑅𝑖 Γ

′ = Γ ≤ Γ′

• Relation 𝑅𝑚 as extensions of a “locked” context: Δ 𝑅𝑚 Γ = Δ ◁λIK Γ
• Valuation 𝑉𝜄 as neutral elements: 𝑉𝜄,Γ = Γ ⊢ne 𝜄

The condition that the valuation must satisfy wk𝐴 : Γ ≤ Γ′ → Γ ⊢ne 𝐴 → Γ′ ⊢ne 𝐴,
for all types 𝐴, can be shown by induction on the neutral term Γ ⊢ne 𝐴. To show that
this model is indeed a possible-world model, it remains for us to show that the frame
conditions are satisfied.

The first frame condition states that OPEs must be reflexive and transitive, which
can be shown by structural induction on the context and definition of OPEs, respec-
tively. The second frame condition states that given Δ ◁λIK Γ and Γ ≤ Γ′ there is
a Δ′ : Ctx such that Δ ≤ Δ′ and Δ′ ◁λIK Γ′,

Δ′ Γ′

Δ Γ

◁λIK

≤

◁λIK

≤

which can be shown by constructing a function by simultaneous recursion on OPEs
and the modal accessibility relation.

Observe that the instantiation of the monotonicity lemma in the NbE model states
that we have the functions wk𝐴 : Γ ≤ Γ′ → ⟦𝐴⟧Γ → ⟦𝐴⟧Γ′ and wkΔ : Γ ≤ Γ′ →
⟦Δ⟧Γ → ⟦Δ⟧Γ′ , which allow denotations of types and contexts to be renamed with
respect to an OPE.
To implement the function quote, we first implement reification and reflection,

using two functions reify𝐴 : ⟦𝐴⟧Γ → Γ ⊢nf 𝐴 and reflect𝐴 : Γ ⊢ne 𝐴 → ⟦𝐴⟧Γ ,
respectively. Reification converts a semantic value to a normal form, while reflection
converts a neutral element to a semantic value. They are implemented as follows by
induction on the index type 𝐴.
reify𝐴,Γ : ⟦𝐴⟧Γ → Γ ⊢nf 𝐴
reify𝜄,Γ 𝑛 = up𝑛
reify𝐴⇒𝐵,Γ 𝑓 = 𝜆 (reify𝐵,(Γ,𝐴) (𝑓 (drop id≤) fresh𝐴,Γ))
reify◻𝐴,Γ 𝑏 = box (reify𝐴,(Γ,µ) (𝑏 id≤ nil))
reflect𝐴,Γ : Γ ⊢ne 𝐴 → ⟦𝐴⟧Γ
reflect𝜄,Γ 𝑛 = 𝑛
reflect𝐴⇒𝐵,Γ 𝑛 = 𝜆(𝑜 : Γ ≤ Γ′). 𝜆𝑎. reflect𝐵,Γ (app (wk𝐴⇒𝐵 𝑜 𝑛) (reify𝐴,Γ′ 𝑎))
reflect◻𝐴,Γ 𝑛 = 𝜆(𝑜 : Γ ≤ Γ′). 𝜆(𝑒 : Γ′ ◁λIK Δ). reflect𝐴,Δ (unboxλIK (wk◻𝐴 𝑜 𝑛) 𝑒)
For the function type, we recursively reify the body of the 𝜆-abstraction by applying

the given semantic function 𝑓 with suitable arguments, which are an OPE drop id≤ :
Γ ≤ Γ, 𝐴 and a value fresh𝐴,Γ = reflect𝐴,(Γ,𝐴) (var zero) : ⟦𝐴⟧Γ,𝐴—which is the De
Bruijn index equivalent of a fresh variable. Reflection, on the other hand, recursively
reflects the application of a neutral Γ ⊢ne 𝑛 : 𝐴⇒ 𝐵 to the reification of the semantic

Normalization for Fitch-Style Modal Calculi

35

argument 𝑎 : ⟦𝐴⟧Γ′ for an OPE 𝑜 : Γ ≤ Γ′. Similarly, for the ◻ type, we recursively
reify the body of box by applying the given semantic function 𝑏 : ∀Γ. Γ ≤ Γ′ →
∀Δ. Γ′ ◁λIK Δ → ⟦𝐴⟧Δ to suitable arguments id≤ : Γ ≤ Γ and the empty context
extension nil : Γ ◁λIK Γ,µ. Reflection also follows a similar pursuit by reflecting the
application of the neutral Γ ⊢ne 𝑛 : ◻𝐴 to the eliminator unbox.
Equipped with reification, we implement quote (as seen below), by applying the

given denotation of a term, a function 𝑓 : ∀Δ. ⟦Γ⟧Δ → ⟦𝐴⟧Δ, to the identity envi-
ronment freshEnvΓ : ⟦Γ⟧Γ , and then reifying the resulting value. The construction of
the value freshEnvΓ is the De Bruijn index equivalent of generating an environment
with fresh variables.

quote : (∀Δ. ⟦Γ⟧Δ → ⟦𝐴⟧Δ) → Γ ⊢nf 𝐴
quote 𝑓 = reify𝐴,Γ (𝑓 freshEnvΓ)
freshEnvΓ : ⟦Γ⟧Γ
freshEnv · = ()
freshEnvΓ,𝐴 = (wk (drop id≤) freshEnvΓ, fresh𝐴,Γ)
freshEnvΓ,µ = (freshEnvΓ, nil)

To prove that the function quote is indeed a retraction of evaluation, we follow the
usual logical relations approach. As seen in Fig. 9, we define a relation L𝐴 indexed by
a type𝐴 that relates a term Γ ⊢ 𝑡 : 𝐴 to its denotation 𝑎 : ⟦𝐴⟧Γ as L𝐴 𝑡 𝑎. From a proof
of L𝐴 𝑡 𝑎, it can be shown that 𝑡 ∼ reify𝐴 𝑎. This relation is extended to contexts as LΔ,
for some context Δ, which relates a substitution Γ ⊢ 𝑠 : Δ to its denotation 𝛿 : ⟦Δ⟧Γ
as LΔ 𝑠 𝛿 .

L𝐴,Γ : Γ ⊢ 𝐴 → ⟦𝐴⟧Γ → Type
L𝜄,Γ 𝑡 𝑛 = 𝑡 ∼ quote𝑛
L𝐴⇒𝐵,Γ 𝑡 𝑓 = ∀Γ′, 𝑜 : Γ ≤ Γ′, 𝑢, 𝑎. L𝐴,Γ′ 𝑢 𝑎 → L𝐵,Γ′ (app (wk 𝑜 𝑡) 𝑢) (𝑓 𝑜 𝑎)
L◻𝐴,Γ 𝑡 𝑏 = ∀Γ′, 𝑜 : Γ ≤ Γ′, 𝑒 : Γ′ ◁λIK Δ. L𝐴,Δ (unboxλIK (wk 𝑜 𝑡) 𝑒) (𝑏 𝑜 𝑒)

LΔ,Γ : Γ ⊢s Δ → ⟦Δ⟧Γ → Type
L·,Γ empty () = ⊤
L(Δ,𝐴),Γ (ext 𝑠 𝑡) (𝛿, 𝑎) = LΔ,Γ 𝑠 𝛿 × L𝐴,Γ 𝑡 𝑎
L(Δ,µ),Γ (extµ 𝑠 (𝑒 : Θ ◁λIK Γ)) (𝛿, 𝑒) = LΔ,Θ 𝑠 𝛿

Fig. 9. Logical relations for λIK

For the logical relations, we then prove the so-called fundamental theorem.

Proposition 3 (Fundamental theorem). Given a term Δ ⊢ 𝑡 : 𝐴, a substitu-
tion Γ ⊢s 𝑠 : Δ and a value 𝛿 : ⟦Δ⟧Γ , if LΔ,Γ 𝑠 𝛿 then L𝐴,Γ (subst 𝑠 𝑡) (⟦𝑡⟧𝛿).

We conclude this subsection by stating the normalization theorem for λIK.
Proposition 3 entails that L𝐴,Δ (subst ids 𝑡) (⟦𝑡⟧ freshEnvΔ) for any term 𝑡 , if we

pick 𝑠 as the identity substitution ids : Δ ⊢s Δ, and 𝛿 as freshEnvΔ : ⟦Δ⟧Δ, since they
can be shown to be related as LΔ,Δ ids freshEnvΔ. From this it follows that subst ids 𝑡 ∼
reify𝐴 (⟦𝑡⟧ freshEnvΔ), and further that 𝑡 ∼ quote ⟦𝑡⟧ from the definition of quote

Modular Normalization with Types

36

and the fact that subst ids 𝑡 = 𝑡 . As a result, the composite norm = quote ◦ ⟦−⟧ is
adequate, i.e. norm 𝑡 = norm 𝑡 ′ implies 𝑡 ∼ 𝑡 ′.
The soundness of λIK with respect to possible-world models (see Theorem 2)

directly entails quote ⟦𝑡⟧ = quote ⟦𝑢⟧ : Γ ⊢nf 𝐴 for all terms 𝑡 , 𝑢 : Γ ⊢ 𝐴 such that
Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴, which means that norm = quote ◦ ⟦−⟧ is complete. Note that this
terminology might be slightly confusing because it is the soundness of ⟦−⟧ that
implies the completeness of norm.

Theorem 4. Let M denote the possible-world model over the frame given by the
relations Γ ≤ Γ′ and Δ ◁λIK Γ and the valuation 𝑉𝜄,Γ = Γ ⊢ne 𝜄.

There is a function quote : M(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢nf 𝐴 such that the composite norm =
quote ◦ ⟦−⟧ : Γ ⊢ 𝐴 → Γ ⊢nf 𝐴 from terms to normal forms of λIK is complete and
adequate.

3.2 Extending to the Calculus λIS4
3.2.1 Terms, Substitutions and Equational Theory. To define the intrinsically-typed
syntax of λIS4, we first define the modal accessibility relation on contexts in Fig. 10.

nil : Γ ◁λIS4 Γ
𝑒 : Δ ◁λIS4 Γ

var 𝑒 : Δ ◁λIS4 Γ, 𝐴
𝑒 : Δ ◁λIS4 Γ

lock 𝑒 : Δ ◁λIS4 Γ,µ

Fig. 10. Modal accessibility relation on contexts (λIS4)

If Δ ◁λIS4 Γ then Γ is an extension of Δ with as many locks as needed. Note that, in
contrast to λIK, the modal accessibility relation is both reflexive and transitive. This
corresponds to the conditions on the accessibility relation for the logic IS4.
Fig. 11 presents the changes of λIK that yield λIS4. The terms are the same as λIK

with the exception of Rule λIK/◻-Elim which now includes the modal accessibility
relation for λIS4. Similarly, the substitution rule for contexts with locks now refers to
◁λIS4 .

λIS4/◻-Elim
Δ ⊢ 𝑡 : ◻𝐴 𝑒 : Δ ◁λIS4 Γ

Γ ⊢ unboxλIS4 𝑡 𝑒 : 𝐴
Θ ⊢ 𝑠 : Δ 𝑒 : Θ ◁λIS4 Γ

Γ ⊢s extµ 𝑠 𝑒 : Δ,µ

Fig. 11. Intrinsically-typed terms and substitutions of λIS4 (omitting the unchanged rules of
Fig. 5)

Fig. 12 presents the equational theory of the modal fragment of λIS4. This is a
slightly modified version of λIK (cf. Fig. 7) that accommodates the changes to the
rule λIS4/◻-Elim. Unlike before, Rule ◻-𝛽 now performs a substitution to modify the
term Δ,µ ⊢ 𝑡 : 𝐴 to a term of type Γ ⊢ 𝐴. Note that the result of such a substitution
need not yield the same term since substitution may change the context extension of
some subterm.

Normalization for Fitch-Style Modal Calculi

37

◻-𝛽
Δ,µ ⊢ 𝑡 : 𝐴 𝑒 : Δ ◁λIS4 Γ

Γ ⊢ unboxλIS4 (box 𝑡) 𝑒 ∼ subst (extµ ids 𝑒) 𝑡

◻-𝜂
Γ ⊢ 𝑡 : ◻𝐴

Γ ⊢ 𝑡 ∼ box (unboxλIS4 𝑡 (lock nil))

Fig. 12. Equational theory for λIS4 (omitting the unchanged rules of Fig. 7)

3.2.2 Possible-World Semantics. Giving possible-world semantics for λIS4 requires
an additional frame condition on the relation 𝑅𝑚 : it must be reflexive and transitive.
Evaluation proceeds as before, where we use a function trimλIS4 : ∀𝑤. ⟦Γ⟧𝑤 → Δ ◁λIS4
Γ → ⟦Δ,µ⟧𝑤 to manipulate the environment for evaluating unboxλIS4 𝑡 𝑒 , as seen
below.

⟦unboxλIS4 𝑡 𝑒⟧𝛾 = ⟦𝑡⟧𝛿 id≤𝑚
where (𝛿,𝑚) = trimλIS4 𝛾 𝑒

The additional frame requirements ensures that the function trimλIS4 can be imple-
mented. For example, consider implementing the case of trimλIS4 for some argument
of type ⟦Γ⟧𝑤 and the extension nil : Γ ◁λIS4 Γ that adds zero locks. The desired result
is of type ⟦Γ,µ⟧𝑤 , which is defined as

∑
𝑣 ⟦Γ⟧𝑣 × 𝑣 𝑅𝑚 𝑤 . We construct such a result

using the argument of ⟦Γ⟧𝑤 by picking 𝑣 as 𝑤 itself, and using the reflexivity of
𝑅𝑚 to construct a value of type𝑤 𝑅𝑚 𝑤 . Similarly, the transitivity of 𝑅𝑚 is required
when the context extension adds more than one lock.

Analogously to Theorem 2, we state the soundness of λIS4 with respect to reflexive
and transitive possible-world models before we instantiate it with the NbE model that
wewill construct in the next subsection. In addition to the coherence conditions stated
before Theorem 2 the soundness proof for λIS4 relies on coherence conditions involv-
ing the additional proofs reflm and transm that a reflexive and transitive modal acces-
sibility relation 𝑅𝑚 must come equipped with. Specifically, transm also needs to be
associative, reflm also needs to be a unit for transm, and the proofs of the factorization
condition also need to satisfy the functoriality laws in the modal accessibility argu-
ment, i.e. factori (reflm𝑤) 𝑖 = 𝑖 , factorm (reflm𝑤) 𝑖 = reflm𝑤 ′, factori (transm 𝑛𝑚) 𝑖 =
factori 𝑛 𝑖′ and factorm (transm 𝑛𝑚) 𝑖 = transm (factorm 𝑛 𝑖′) (factorm𝑚 𝑖) where 𝑖′ B
factori𝑚 𝑖 : 𝑤 𝑅𝑖 𝑤

′.

Proposition 5. Let C be a Cartesian closed category equipped with a comonad ◻
that has a left adjoint µ ⊣ ◻, then equivalent terms 𝑡 and 𝑢 : Γ ⊢ 𝐴 denote equal
morphisms in C.

Proof. This is a version of Clouston [12, Theorem 4.8] for λIS4 where the side
condition of Rule λIS4/◻-Elim appears as an argument to the term former unbox and
hence idempotency is not imposed on the comonad ◻. □

Theorem 6. Let M be a possible-world model (see Definition 2) such that the modal
accessibility relation 𝑅𝑚 is reflexive and transitive. If two terms 𝑡 and 𝑢 : Γ ⊢ 𝐴 of λIS4
are equivalent (see Fig. 12) then the functions ⟦𝑡⟧ and ⟦𝑢⟧ : ∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤 as
determined by M are equal.

Proof. The right adjoint determined by a reflexive and transitive frame has a
comonad structure so that we can conclude by applying Proposition 5. □

Modular Normalization with Types

38

3.2.3 NbE Model. The normal forms of λIS4 are defined as before, except for the
following rule replacing the neutral rule λIK/Ne/◻-Elim.

λIS4/Ne/◻-Elim
Δ ⊢ne 𝑛 : ◻𝐴 𝑒 : Δ ◁λIS4 Γ

Γ ⊢ne unboxλIS4 𝑛 𝑒 : 𝐴
The NbE model construction also proceeds in the same way, where we now pick

the relation 𝑅𝑚 as arbitrary extensions of a context: Δ 𝑅𝑚 Γ = Δ ◁λIS4 Γ. The modal
fragment for reify and reflect are now implemented as follows:

reify◻𝐴,Γ 𝑏 = box (reify𝐴,(Γ,µ) (𝑏 id≤ (lock nil)))
reflect◻𝐴,Γ 𝑛 = 𝜆(𝑜 : Γ ≤ Γ′). 𝜆(𝑒 : Γ′ ◁λIS4 Δ). reflect𝐴,Δ (unbox (wk 𝑜 𝑛) 𝑒)

Theorem 7. LetM denote the possible-world model over the reflexive and transitive
frame given by the relations Γ ≤ Γ′ and Δ ◁λIS4 Γ and the valuation 𝑉𝜄,Γ = Γ ⊢ne 𝜄.

There is a function quote : M(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢nf 𝐴 such that the composite norm =
quote ◦ ⟦−⟧ : Γ ⊢ 𝐴 → Γ ⊢nf 𝐴 from terms to normal forms of λIS4 is complete and
adequate.

The proof of this theorem requires us to identify terms by extending the equational
theory of λIS4 with an additional rule. To understand the need for it, consider unboxing
a term Γ ⊢ 𝑡 : ◻𝐴 into an extended context Γ, 𝐵 in λIS4. Wemay first weaken 𝑡 as Γ, 𝐵 ⊢
wk (drop id≤) 𝑡 : ◻𝐴 and then apply unbox as Γ, 𝐵 ⊢ unbox (wk (drop id≤) 𝑡) nil : 𝐴.
However, we may also apply unbox on 𝑡 as Γ, 𝐵 ⊢ unbox 𝑡 (var nil) : 𝐴. This weakens
the term “explicitly” in the sense that the weakening with 𝐵 is recorded in the term
by the proof var nil of the modal accessibility relation Γ ◁λIS4 Γ, 𝐵. The two ways
of unboxing Γ ⊢ 𝑡 : ◻𝐴 into the extended context Γ, 𝐵 result in two terms with
the same denotation in the possible-world semantics but distinct typing derivations.
We wish the two typing derivations unbox 𝑡 (var nil) and unbox (wk (drop id≤) 𝑡) nil
to be identified. For this reason, we extend the equational theory of λIS4 with the
rule unbox 𝑡 (transm 𝑒 𝑒′) ∼ unbox (wk (toOPE𝑒) 𝑡) 𝑒′ for any lock-free extension 𝑒 ,
which can be converted to a sequence of drops using the function toOPE . Explicit
weakening can also be avoided by, instead of extending the equational theory, chang-
ing the definition of the modal accessibility relation such that Δ ◁λIS4 Γ holds only if
Γ = Δ or Γ = Δ,µ, Γ′ for some Γ′. Note that the modal accessibility relation for λIK,
where the issue of explicit weakening does not occur, satisfies this property.

3.3 Extending to the Calculi λIT and λIK4
The NbE model construction for λIT and λIK4 follows a similar pursuit as λIS4. We
define suitable modal accessibility relations ◁λIT and ◁λIK4 as extensions that allow the
addition of at most one µ, and at least one lock µ, respectively. To give possible-world
semantics, we require an additional frame condition that the relation 𝑅𝑚 be reflexive
for λIT and transitive for λIK4. For evaluation, we use a function trimλIT : ⟦Γ⟧𝑤 →
Δ ◁λIT Γ → ⟦Δ,µ⟧𝑤 for λIT, and similarly trimλIK4 for λIK4. The modification to
the neutral rule λIK/Ne/◻-Elim is achieved as before in λIS4 using the corresponding
modal accessibility relations. Unsurprisingly, reification and reflection can also be
implemented, thus yielding normalization functions for both λIT and λIK4.

Normalization for Fitch-Style Modal Calculi

39

4 COMPLETENESS, DECIDABILITY AND LOGICAL APPLICATIONS
In this section we record some immediate consequences of the model constructions
we presented in the previous section.

Completeness of the Equational Theory. As a corollary of the adequacy of an NbE
model N , i.e. Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴 whenever ⟦𝑡⟧ = ⟦𝑢⟧ : N(⟦Γ⟧, ⟦𝐴⟧), we obtain
completeness of the equational theory with respect to the class of models that the
respective NbE model belongs to. Given the NbE models constructed in Subsec-
tions 3.1.3 and 3.2.3 this means that the equational theories of λIK and λIS4 (cf. Fig. 7)
are (sound and) complete with respect to the class of Cartesian closed categories
equipped with an adjunction and a right-adjoint comonad, respectively.

Theorem 8. Let 𝑡 , 𝑢 : Γ ⊢ 𝐴 be two terms of λIK. If for all Cartesian closed catego-
ries M equipped with an adjunction it is the case that ⟦𝑡⟧ = ⟦𝑢⟧ : M(⟦Γ⟧, ⟦𝐴⟧) then
Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴.

Proof. Let M0 be the model we constructed in Subsection 3.1.3. Since M0 is
a Cartesian closed category equipped with an adjunction, by assumption we have
⟦𝑡⟧M0 = ⟦𝑢⟧M0 . And lastly, sinceM0 is anNbEmodel, we have Γ ⊢ 𝑡 ∼ quote ⟦𝑡⟧M0 =
quote ⟦𝑢⟧M0 ∼ 𝑢 : 𝐴. □

Note that this statement corresponds to Clouston [12, Theorem 3.2] but there it is
obtained via a term model construction and for the term model to be equipped with
an adjunction the calculus needs to be first extended with an internalization of the
operation µ on contexts as an operation ♦ on types.

Theorem 9. Let 𝑡 , 𝑢 : Γ ⊢ 𝐴 be two terms of λIS4. If for all Cartesian closed
categories M equipped with a right-adjoint comonad it is the case that ⟦𝑡⟧ = ⟦𝑢⟧ :
M(⟦Γ⟧, ⟦𝐴⟧) then Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴.

Proof. As for Theorem 8. □

This statement corresponds to Clouston [12, Section 4.4] but there it is proved for
an equational theory that identifies terms up to differences in the accessibility proofs
and with respect to the class of models where the comonad is idempotent, to which
the model of Subsection 3.2.3 does not belong.

Completeness of the Deductive Theory. Using the quotation function of an NbE
modelN , i.e. quote : N(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢ 𝐴, we obtain completeness of the deductive
theory with respect to the class of models that the respective NbE model belongs
to. Given the NbE models constructed in Subsections 3.1.3 and 3.2.3 this means that
the deductive theories of λIK and λIS4 (cf. Figs. 2 and 5) are (sound and) complete
with respect to the class of possible-world models with an arbitrary frame and a
reflexive–transitive frame, respectively.

Theorem 10. Let Γ : Ctx be a context and 𝐴 : Ty a type. If for all possible-world
modelsM it is the case thatM(⟦Γ⟧, ⟦𝐴⟧) is inhabited then there is a term 𝑡 : Γ ⊢ 𝐴 of
λIK.

Modular Normalization with Types

40

Proof. Let M0 be the model we constructed in Subsection 3.1.3. Since M0 is a
possible-world model, by assumption we have a morphism 𝑝 : M0 (⟦Γ⟧, ⟦𝐴⟧). And
lastly, sinceM0 is an NbE model, we have the term quote 𝑝 : Γ ⊢ 𝐴. □

Theorem 11. Let Γ : Ctx be a context and 𝐴 : Ty a type. If for all possible-world
modelsM with a reflexive–transitive frame it is the case thatM(⟦Γ⟧, ⟦𝐴⟧) is inhabited
then there is a term 𝑡 : Γ ⊢ 𝐴 of λIS4.

Proof. As for Theorem 10. □

Note that the proofs of Theorems 10 and 11 are constructive.

Decidability of the Equational Theory. As a corollary of the completeness and ade-
quacy of an NbE model N , i.e. Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴 if and only if ⟦𝑡⟧ = ⟦𝑢⟧ : N(⟦Γ⟧, ⟦𝐴⟧),
we obtain decidability of the equational theory from decidability of the equality of
normal forms 𝑛,𝑚 : Γ ⊢nf 𝐴. Given the NbE models constructed in Subsections 3.1.3
and 3.2.3 this means that the equational theories of λIK and λIS4 (cf. Fig. 7) are
decidable.
To show that any of the following decision problems 𝑃 (𝑥) is decidable we give a

constructive proof of the proposition∀𝑥 . 𝑃 (𝑥)∨¬𝑃 (𝑥). Such a proof can be understood
as the construction of an algorithm 𝑑 that takes as input an 𝑥 and produces as output
a Boolean 𝑑 (𝑥), alongside a correctness proof that 𝑑 (𝑥) is true if and only if 𝑃 (𝑥)
holds.

Theorem 12. For any two terms 𝑡 , 𝑢 : Γ ⊢ 𝐴 of λIK the problem whether 𝑡 ∼ 𝑢 is
decidable.

Proof. We first observe that for any two normal forms 𝑛,𝑚 : Γ ⊢nf 𝐴 of λIK the
problem whether 𝑛 =𝑚 is decidable by proving ∀𝑛,𝑚. 𝑛 =𝑚 ∨ 𝑛 ≠𝑚 constructively.
All the cases of an simultaneous induction on 𝑛,𝑚 : Γ ⊢nf 𝐴 are immediate.

Let N be the NbE model we constructed in Subsection 3.1.3. Completeness and
adequacy of N imply that we have 𝑡 ∼ 𝑢 if and only if norm 𝑡 = norm𝑢 for the
function norm : Γ ⊢ 𝐴 → Γ ⊢nf 𝐴, 𝑡 ↦→ quote ⟦𝑡⟧. Now, 𝑡 ∼ 𝑢 is decidable because
norm 𝑡 = norm𝑢 is decidable by the observation we started with. □

Theorem 13. For any two terms 𝑡 , 𝑢 : Γ ⊢ 𝐴 of λIS4 the problem whether 𝑡 ∼ 𝑢 is
decidable.

Proof. As for Theorem 12. □

Denecessitation. The last of the consequences of the NbE model constructions we
record is of a less generic flavour than the other three, namely it is an application of
normal forms to a basic proof-theoretic result in modal logic.

Using invariance of truth in possible-world models under bisimulation2 it can be
shown that ◻𝐴 is a valid formula of IK (or IS4) if and only if 𝐴 is. A completeness
theorem then implies the same for provability of◻𝐴 and𝐴. The statement for proofs
in λIK (and λIS4) can also be shown by inspection of normal forms as follows.
2Invariance of truth under bisimulation says that if 𝑤 and 𝑣 are two bisimilar worlds in two possible-world
models M0 and M1, respectively, then for all formulas 𝐴 it is the case that ⟦𝐴⟧𝑤 holds in M0 if and
only if ⟦𝐴⟧𝑣 does in M1.

Normalization for Fitch-Style Modal Calculi

41

Firstly, we note that while deduction is not closed under arbitrary context exten-
sions (including locks) it is closed under extensions (including locks) on the left:

Lemma 14 (cf. Clouston [12, Lemma A.1]). Let Δ, Γ : Ctx be arbitrary contexts,
both possibly containing locks, and 𝐴 : Ty an arbitrary type. There is an operation Γ ⊢
𝐴 → Δ, Γ ⊢ 𝐴 on terms of λIK (and λIS4), where Δ, Γ denotes context concatenation.

Proof. By recursion on terms. □

And, secondly, we note that also a converse of this lemma holds by inspection of
normal forms:

Lemma 15. Let Δ, Γ : Ctx be arbitrary contexts, both possibly containing locks,
𝐴 : Ty an arbitrary type and 𝑡 : Δ, Γ ⊢ 𝐴 a term of λIK (or λIS4) in the concatenated
context Δ, Γ that does not mention any variables from Δ, then there is a term 𝑡 ′ : Γ ⊢ 𝐴
of λIK (or λIS4, respectively).

Proof. Since normalization (see Theorems 4 and 7) does not introduce new free
variables it suffices to prove the statement for terms in normal form. We do so by
induction on normal forms 𝑛 : Δ, Γ ⊢nf 𝐴 (see Fig. 8). The only nonimmediate
step is for 𝑛 of the form unbox𝑛′ 𝑒 for some neutral element 𝑛′ : Δ′ ⊢ne ◻𝐴 and
Δ′ ◁ Δ ≤ Δ, Γ. But in that case the induction hypothesis says that we have a neutral
element 𝑛′′ : · ⊢ne ◻𝐴, which is impossible. □

Note that some form of normalization seems to be needed in the proof of Lemma 15.
More specifically, the “strengthening” of a term of the form unbox 𝑡 𝑒 from the con-
text ·,µ, · to the empty context · cannot possibly result in a term of the form unbox 𝑡 ′ 𝑒′

because there is no context Γ such that Γ ◁ · in λIK. As an example, consider the
term unbox (box (𝜆 𝑥. 𝑥)) nil, which needs to be strengthened to 𝜆 𝑥. 𝑥 .
With these two lemmas at hand we are ready to prove denecessitation through

normalization:

Theorem 16. Let 𝐴 : Ty be an arbitrary type. There is a term 𝑡 : · ⊢ 𝐴 of λIK (or
λIS4) if and only if there is a term 𝑢 : · ⊢ ◻𝐴 of λIK (or λIS4, respectively), where · : Ctx
denotes the empty context.

Proof. From a term 𝑡 : · ⊢ 𝐴 we can construct a term 𝑡 ′ : ·,µ ⊢ 𝐴 using Lemma 14
and thus the term 𝑢 = box 𝑡 ′ : · ⊢ ◻𝐴.
In the other direction, from a term 𝑢 : · ⊢ ◻𝐴 we obtain a normal form 𝑢′ =

norm𝑢 : · ⊢nf ◻𝐴 using Theorems 4 and 7. By inspection of normal forms (see Fig. 8)
we know that 𝑢′ must be of the form box 𝑣 for some normal form 𝑣 : ·,µ ⊢nf 𝐴, from
which we obtain a term 𝑡 : · ⊢ 𝐴 using Lemma 15 since the context ·,µ does not
declare any variables that could have been mentioned in 𝑣 . □

This concludes this section on some consequences of the model constructions
presented in this paper. Note that the consequences we recorded are completely
independent of the concrete model construction. To wit, the two completeness the-
orems follow from the mere existence of an NbE model, and the decidability and
denecessitation theorems follow from the mere existence of a normalization function.

Modular Normalization with Types

42

5 PROGRAMMING-LANGUAGE APPLICATIONS
In this section, we discuss some implications of normalization for Fitch-style calculi
for specific interpretations of the necessity modality in the context of programming
languages. In particular, we show how normalization can be used to prove properties
about program calculi by leveraging the shape of normal forms of terms. We extend
the term calculi presented earlier with application-specific primitives, ensure that the
extended calculi are in fact normalizing, and then use this result to prove properties
such as capability safety, noninterference, and binding-time correctness. Note that
we do not mechanize these results in Agda and do not prove these properties in
their full generality, but only illustrate special cases. Although possible, proving the
general properties requires further technical development that obscures the main
idea underlying the use of normal forms for simplifying these proofs.

5.1 Capability Safety
Choudhury and Krishnaswami [11] present a modal type system based on IS4 for a
programming language with implicit effects in the style of ML [30] and the computa-
tional lambda calculus [32]. In this language, programs need access to capabilities to
perform effects. For instance, a primitive for printing a string requires a capability as
an argument in addition to the string to be printed. Crucially, capabilities cannot be
introduced within the language, and must be obtained either from the global context
(called ambient capabilities) or as a function argument.

Let us denote the type of capabilities by Cap. Passing a printing capability 𝑐 to
a function of type Cap⇒ Unit in a language that uses capabilities to print yields
a program that either (1) does not print, (2) prints using only the capability 𝑐 , or
(3) prints using ambient capabilities (and possibly 𝑐). A program that at most uses the
capabilities that it is passed explicitly, as in the cases 1 and 2, is said to be capability
safe. To identify such programs, Choudhury and Krishnaswami [11] introduce a
comonadic modality◻ to capture capability safety. Their type system is loosely based
on the dual-context calculus for IS4 [34, 27]. A term of type ◻𝐴 is enforced to be
capability safe by making the introduction rule for◻ “brutally” remove all capabilities
from the typing context. As a result, programs with the type ◻(Cap ⇒ Unit) are
denied ambient capabilities and thus guaranteed to behave like the cases 1 and 2.

Choudhury and Krishnaswami [11] characterize capability safety precisely using
their capability space model. A capability space (𝑋,𝑤𝑋) is a set 𝑋 and a weight
relation 𝑤𝑋 that assigns sets of capabilities to every member in 𝑋 . In this model,
they define a comonad that restricts the underlying set of a capability space to those
elements that are only related to the empty set of capabilities. This comonad has a
left adjoint that replaces the weight relation of a capability space by the relation that
relates every element to the empty set of capabilities. This adjunction suggests that
capability spaces are a model of λIS4 and we may thus use λIS4 to write programs
that support reasoning about capability safety.
In this subsection, we present a calculus λIS4+MoggiCap that extends λIS4 with

a capability type and a monad for printing effects. We extend the normalization
algorithm for λIS4 to λIS4+MoggiCap and show that the resulting normal forms can
be used to prove a kind of capability safety. In contrast to the language presented

Normalization for Fitch-Style Modal Calculi

43

by Choudhury and Krishnaswami [11], λIS4+MoggiCap models a language where
effects are explicit in the type of a term. Languages with explicit effects, such as
Haskell [7] (with the IO monad) or PureScript [19] (with the Effect monad), can
also benefit from a mechanism for capability safety, and we begin with an example
in a hypothetical extension of PureScript to illustrate this.

Example in PureScript. Let us consider web development in PureScript. A web
application may consist of a mashup of several components, e.g. social media, news
feed, or chat, provided by untrusted sources. A component is a function of type

type Component = Element -> Effect Unit

that takes as a parameter the DOM element where the component will be rendered.
For the correct functioning of the web application, it is important that components do
not interfere with each other in malicious ways. For example, a malicious component
(of Bob) could illegitimately overwrite a DOM element (of Alice):

evilBob :: Component
evilBob e = do w <- window

doc <- document w
aliceE <- getElementById "alice.app" doc
setTextContent "Alice has been hacked!" aliceE

The issue here is that Bob has unrestricted access to the function window ::
Effect Window, and is able to obtain the DOM using document :: Window ->
Effect DOM and overwrite an element that belongs to Alice. Capabilities can be
leveraged to restrict the access to window. We can achieve this by extending Pure-
Script with a type WindowCap, a type constructor Box that works similarly to
Choudhury and Krishnaswami’s ◻, and replacing the function window with a func-
tion window' :: WindowCap -> Effect Window that requires an additional capa-
bility argument. By making WindowCap an ambient capability that is available glob-
ally, all existing programs retain their unrestricted access to retrieve a window as
before. The difference now, however, is that we can selectively restrict some pro-
grams and limit their access to WindowCap using Box. We can define a variant of the
type Component as:

type Component' = Box (Element -> Effect Unit)

By requiring Bob to write a component of the type Component', we are ensured
that Bob cannot overwrite an element that belongs to Alice. This is because the
Box type constructor used to define Component' disallows access to all ambient
capabilities (including WindowCap), and thus restricts Bob to only using the given
Element argument. In particular, the program evilBob cannot be reproduced with
the type Component' since the substitute function window' requires a capability that
is neither available as an argument nor as an ambient capability.

Extension with a Capability and a Monad. We extend λIS4 with a monad for printing
based on Moggi’s monadic metalanguage [33]. We introduce a type T𝐴 that denotes
a monadic computation that can print before returning a value of type 𝐴, a type Cap
for capabilities, and a type String for strings. Fig. 13 summarizes the terms that corre-
spond to this extension. The term construct print is used for printing. The equational

Modular Normalization with Types

44

Ty 𝐴, 𝐵 F . . . | T𝐴 | Cap | String | Unit Ctx Γ F . . .

T-Intro
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ return 𝑡 : T𝐴

T-Elim
Γ ⊢ 𝑡 : T𝐴 Γ, 𝐴 ⊢ 𝑢 : T𝐵

Γ ⊢ let 𝑡 𝑢 : T𝐵

Unit-Intro
Γ ⊢ unit : Unit

String-Lit

Γ ⊢ str𝑠 : String
𝑠 ∈ String

T-Print
Γ ⊢ 𝑐 : Cap Γ ⊢ 𝑠 : String

Γ ⊢ print 𝑐 𝑠 : TUnit

Fig. 13. Types, contexts and terms of λIS4+MoggiCap (omitting the unchanged rules of Figs. 5
and 11)

T-𝛽
Γ ⊢ 𝑡 : 𝐴 Γ, 𝐴 ⊢ 𝑢 : T𝐵

Γ ⊢ let (return 𝑡) 𝑢 ∼ subst (ext ids 𝑡) 𝑢

T-𝜂
Γ ⊢ 𝑡 : T𝐴

Γ ⊢ 𝑡 ∼ let 𝑡 (return (var zero))

T-𝛾
Γ ⊢ 𝑡1 : 𝐴 Γ, 𝐴 ⊢ 𝑡2 : T𝐵 Γ, 𝐵 ⊢ 𝑡3 : T𝐶

Γ ⊢ let (let 𝑡1 𝑡2) 𝑡3 ∼ let 𝑡1 (let 𝑡2 (wk (keep (drop id≤)) 𝑡3))

Fig. 14. Equational theory for λIS4+MoggiCap (omitting the unchanged rules of Figs. 7 and 12)

theory of λIS4+MoggiCap and the corresponding normal forms are summarized in
Fig. 14 and Fig. 15, respectively.
To extend the NbE model of λIS4 with an interpretation for the monad, we use

the standard techniques used for normalizing computational effects [4, 17]. The
interpretation of the other primitive types also follows a standard pursuit [42]: we
interpret Cap by neutrals of type Cap and String by the disjoint union of String and
neutrals of type String. The difference in their interpretation is caused by the fact
that there is no introduction form for the type Cap.

Proving Capability Safety. Programs that lack access to capabilities are necessarily
capability safe. We say that a program Γ ⊢ 𝑝 : 𝐴 is trivially capability safe if there
is a program · ⊢ 𝑝′ : 𝐴 such that Γ ⊢ 𝑝 ∼ leftConcatΓ 𝑝

′ : 𝐴, where leftConcatΓ :
∀Δ, 𝐴. Δ ⊢ 𝐴 → Γ,Δ ⊢ 𝐴 can be defined similarly to the operation given by Lemma 14
for λIS4.

First, we prove an auxiliary lemma about normal forms with a capability in context.

Lemma 17. For any context Γ, type 𝐴 and normal form 𝑐 : Cap,µ, Γ ⊢nf 𝑛 : 𝐴 there
is a normal form ·,µ, Γ ⊢nf 𝑛′ : 𝐴 such that 𝑛 = leftConcat𝑐 :Cap 𝑛

′.

Normalization for Fitch-Style Modal Calculi

45

Nf/T-Intro
Γ ⊢nf 𝑚 : 𝐴

Γ ⊢nf return𝑚 : T𝐴

Nf/T-Elim
Γ ⊢ne 𝑛 : T𝐴 Γ, 𝐴 ⊢nf 𝑚 : T𝐵

Γ ⊢nf let𝑛𝑚 : T𝐵

Nf/Unit-Intro
Γ ⊢nf unit : Unit

Nf/Up-Cap
Γ ⊢ne 𝑛 : Cap

Γ ⊢nf up𝑛 : Cap

Nf/Up-String
Γ ⊢ne 𝑛 : String

Γ ⊢nf up𝑛 : String

Nf/String-Lit

Γ ⊢nf str𝑠 : String
𝑠 ∈ String

Nf/T-Print
Γ ⊢nf 𝑐 : Cap Γ ⊢nf 𝑠 : String Γ,Unit ⊢nf 𝑚 : T𝐴

Γ ⊢nf let (print 𝑐 𝑠)𝑚 : T𝐴

Fig. 15. Normal forms of λIS4+MoggiCap (omitting the unchanged normal forms of λIS4)

Proof. We prove the statement for both normal forms and neutral elements by
mutual induction. The only nonimmediate case is when the neutral is of the form 𝑐 :
Cap,µ, Γ ⊢ne unbox𝑛 𝑒 : 𝐴 for some 𝑛 : Δ ⊢ne ◻𝐴 and 𝑒 : Δ ◁λIS4 𝑐 : Cap,µ, Γ. We
observe that there are no neutral elements of type ◻𝐴 in context 𝑐 : Cap and that
hence Δ must contain the leftmost lock in 𝑐 : Cap,µ, Γ. Thus, this case also holds by
induction hypothesis. □

Now, we observe that all terms 𝑐 : Cap ⊢ 𝑡 : ◻𝐴 are trivially capability safe. By
normalization, we have that 𝑐 : Cap ⊢ 𝑡 ∼ norm 𝑡 : ◻𝐴. Given the definition of normal
forms of λIS4+MoggiCap, norm 𝑡 must be box𝑛 for some normal form 𝑐 : Cap,µ ⊢nf 𝑛 :
𝐴. By Lemma 17, there is a normal form µ ⊢nf 𝑛′ : 𝐴 such that 𝑛 = leftConcat ·,Cap 𝑛

′.
Since the operation leftConcat commutes with box, i.e. leftConcat ·,Cap (box𝑛′) =
box (leftConcat ·,Cap 𝑛′), we also have that 𝑡 ∼ box𝑛 = leftConcat ·,Cap (box𝑛′). As a
result, 𝑡 must be trivially capability safe.
A consequence of this observation is that any term 𝑐 : Cap ⊢ 𝑡 : ◻(TUnit) is

trivially capability safe. This means that 𝑡 does not print since it could not possibly do
so without a capability. Going further, we can also observe that 𝑡 ∼ box (return unit) :◻(TUnit), since the only normal form of type TUnit in the empty context is · ⊢nf
return unit : TUnit. Note that this argument (and the one above) readily adapts to a
vector of capabilities ®𝑐 in context as opposed to a single capability 𝑐 .

5.2 Information-Flow Control
Information-flow control (IFC) [37] is a technique used to protect the confidentiality
of data in a program by tracking the flow of information within the program.
In type-based static IFC [e.g. 1, 38, 36] types are used to associate values with

confidentiality levels such as secret or public. The type system ensures that secret

Modular Normalization with Types

46

inputs do not interfere with public outputs, enforcing a security policy that is typically
formalized as a kind of noninterference property [20].

Noninterference is proved by reasoning about the semantic behaviour of a program.
Tomé Cortiñas and Valliappan [40] present a proof technique that uses normalization
for showing noninterference for a static IFC calculus based on Moggi’s monadic
metalanguage [33]. This technique exploits the insight that normal forms represent
equivalence classes of terms identified by their semantics, and thus reasoning about
normal forms of terms (as opposed to terms themselves) vastly reduces the set of
programs that we must take into consideration. Having developed normalization for
Fitch-style calculi, we can leverage this technique to prove noninterference.
In this subsection, we extend λIK with Booleans (denoted λIK+Bool), extend the

NbE model of λIK to λIK+Bool, and illustrate the technique of Tomé Cortiñas and
Valliappan on λIK+Bool for proving noninterference. We interpret the type ◻𝐴 as a
secret of type 𝐴, and other types as public.

Extension with Booleans. Noninterference can be better appreciated in the presence
of a type whose values are distinguishable by an external observer. To this extent,
we extend λIK with a type Bool and corresponding introduction and elimination
forms—as described in Fig. 16.

Ty 𝐴, 𝐵 F . . . | Bool Ctx Γ F . . .

Bool-Intro-true
Γ ⊢ true : Bool

Bool-Intro-false
Γ ⊢ false : Bool

Bool-Elim
Γ ⊢ 𝑏 : Bool Γ, Γ′ ⊢ 𝑡1 : 𝐴 Γ, Γ′ ⊢ 𝑡2 : 𝐴

Γ, Γ′ ⊢ ifte𝑏 𝑡1 𝑡2 : 𝐴

Fig. 16. Types, contexts and intrinsically-typed terms of λIK+Bool (omitting the unchanged
rules of Fig. 5)

We modify the usual elimination rule for Bool by allowing the context of the
conclusion ifte𝑏 𝑡1 𝑡2 and branches 𝑡1 and 𝑡2 in the rule Bool-Elim to extend the context
of the scrutinee 𝑏. This modification (following Clouston [12, Fig. 2]) enables the
following commuting conversion, which is required to ensure that terms can be fully
normalized and normal forms enjoy the subformula property:

Δ ⊢ 𝑏 : Bool Δ,Δ′ ⊢ 𝑡1 : ◻𝐴 Δ,Δ′ ⊢ 𝑡2 : ◻𝐴 𝑒 : Δ,Δ′ ◁ Γ

Γ ⊢ unbox (ifte𝑏 𝑡1 𝑡2) 𝑒 ∼ ifte𝑏 (unbox 𝑡1 𝑒) (unbox 𝑡2 𝑒)
A commuting conversion is required as usual for every other elimination rule, in-
cluding the rule ⇒-Elim. These are however standard and thus omitted here.

We extend the equational theory of λIK to λIK+Bool by adding the usual rules:
• ifte true 𝑡1 𝑡2 ∼ 𝑡1
• ifte false 𝑡1 𝑡2 ∼ 𝑡2
• 𝑡 ∼ ifte 𝑡 true false, for terms 𝑡 of type Bool

Normalization for Fitch-Style Modal Calculi

47

The normal forms of λIK+Bool include those of λIK in addition to the following.
Nf/Bool-Intro-true
Γ ⊢nf true : Bool

Nf/Bool-Intro-false
Γ ⊢nf false : Bool

Nf/Bool-Elim
Γ ⊢ne 𝑛 : Bool Γ, Γ′ ⊢nf 𝑚1 : 𝐴 Γ, Γ′ ⊢nf 𝑚2 : 𝐴

Γ, Γ′ ⊢nf ifte𝑛𝑚1𝑚2 : 𝐴
Observe that a neutral of type Bool is not immediately in normal form, and must be
expanded as ifte𝑛 true false. This is unlike neutrals of the type 𝜄, which are in normal
form by Rule Nf/Up.
To extend the NbE model of λIK with Booleans, we leverage the interpretation

of sum types used by Abel and Sattler [2], who attribute their idea to Altenkirch
and Uustalu [5]. This interpretation readily supports commuting conversions, and
a minor refinement that reflects the change to the rule Bool-Elim yields a reifiable
interpretation for Booleans in λIK+Bool.

Proving Noninterference. A program · ⊢ 𝑓 : ◻𝐴 ⇒ Bool is noninterferent if it is
the case that · ⊢ app 𝑓 𝑠1 ∼ app 𝑓 𝑠2 : Bool for any two secrets · ⊢ 𝑠1, 𝑠2 : ◻𝐴. By
instantiating 𝐴 to Bool, we can show that any program · ⊢ 𝑓 : ◻Bool ⇒ Bool is
noninterferent and thus cannot leak a secret Boolean argument. In λIK+Bool, the
type system ensures that data of type ◻𝐴 type can only influence (or flow to) data
of type ◻𝐵, thus all programs of type ◻Bool ⇒ Bool must be noninterferent. To
show this, we analyze the possible normal forms of 𝑓 and observe that they must
be equivalent to a constant function, such as 𝜆 𝑥. true or 𝜆 𝑥. false, which evidently
does not use its input argument 𝑥 and is thus noninterferent.
In detail, normal forms of type ◻Bool ⇒ Bool must have the shape 𝜆 𝑥.𝑚, for

some normal form ·,◻Bool ⊢nf 𝑚 : Bool. If 𝑚 is either true or false, then 𝜆 𝑥.𝑚
must be a constant function and we are done. Otherwise, it must be some normal
form ·,◻Bool ⊢nf ifte𝑛𝑚1𝑚2 : Bool with a neutral 𝑛 : Bool either in context · or
in context ·,◻Bool. Such a neutral could either be of shape unbox𝑛′ or app𝑛′′𝑚′

for some neutrals 𝑛′ and 𝑛′′. However, this is impossible, since the context of the
neutral unbox𝑛′ must contain a lock, and neither the context · nor the context ·,□Bool
do. The existence of 𝑛′′ can also be similarly dismissed by appealing to the definition
of neutrals.

Discussion. Observe that not all Fitch-style calculi are well-suited for interpret-
ing the type ◻𝐴 as a secret, because noninterference might not hold. In λIS4, the
term 𝜆 𝑥. unbox𝑥 : ◻𝐴⇒𝐴 (axiom T) is well-typed but leaks the secret 𝑥 , thus break-
ing noninterference. The validity of the interpretation of ◻𝐴 as a secret depends on
the calculus under consideration and the axioms it exhibits.

5.3 Partial Evaluation
Davies and Pfenning [14, 15] present a modal type system for staged computation
based on IS4. In their system, the type ◻𝐴 represents code of type 𝐴 that is to
be executed at a later stage, and the axioms of IS4 correspond to operations that
manipulate code. The axiom K : ◻(𝐴⇒𝐵)⇒(◻𝐴⇒◻𝐵) corresponds to substituting

Modular Normalization with Types

48

code in code, T : ◻𝐴⇒𝐴 to evaluating code, and 4 : ◻𝐴⇒◻◻𝐴 to further delaying
the execution of code to a subsequent stage. A desired property of this type system
is that code must only depend on code, and thus the term 𝜆 𝑥 : 𝐴. box𝑥 must be
ill-typed.
Although λIS4 exhibits the desired properties of a type system for staging, its

equational theory in Fig. 12 does not reflect the semantics of staged computation. For
example, the result of normalizing the term box (2 ∗ unbox (box 3)) in λIS4 extended
with natural number literals and multiplication is box 6. While the result expected
from reducing it in accordance with Davies and Pfenning’s operational semantics is
box (2 ∗ 3). The equational theory of Fitch-style calculi in general do not take into
account the occurrence of a term (such as the literal 3) under box, while this is crucial
for Davies and Pfenning’s semantics. We return to this discussion at the end of this
subsection.
If we restrict our attention to a special case of staged computation in partial

evaluation [26], however, the semantics of Fitch-style calculi are better suited. In the
context of partial evaluation, the type◻𝐴 represents a dynamic computation of type𝐴
that must be executed at runtime, and other types represent static computations.
Static and dynamic are also known as binding-time annotations, and they are used
by a partial evaluator to evaluate all static computations.
In the term box (2 ∗ unbox (box 3)), we consider the literal 3 to be annotated as

dynamic since it occurs under box. The construct unbox strips this annotation and
brings it back to static. The multiplication of static subterms 2 and unbox (box 3) is
however considered annotated dynamic since it itself occurs under box. As a result, a
partial evaluator that respects these annotations does not perform the multiplication
and specializes the term to box (2 ∗ 3)—which matches the result of evaluating with
Davies and Pfenning’s staging semantics. Observe that the same partial evaluator
would specialize the expression 2 ∗ unbox (box 3) to 6 since the multiplication does
not occur under box and is thus considered to be annotated static.
The goal of a partial evaluator is to optimize runtime execution of a program by

eagerly evaluating as many static computations as possible and yielding an optimal
dynamic program. The term box 6 is more optimized than the term box (2 ∗ 3) since
the evidently static multiplication has also been evaluated. Normalization in a Fitch-
style calculus yields the former result, and the gain in optimality can be seen as
a form of binding-time improvement [26] that is performed automatically during
normalization.

In this subsection, we extend λIK with natural number literals and multiplication
(denoted λIK+N), and extend the NbE model of λIK to λIK+N. We use λIK as the base
calculus since the other axioms are not needed in the context of partial evaluation [14,
15]. The resulting normalization function yields an optimal partial evaluator for λIK+N.
In partial evaluation, as with staging in general, we desire that a term 𝜆 𝑥 : N. box𝑥
be disallowed, since a runtime execution of a dynamic computation must not have a
static dependency. While this term is already ill-typed in λIK+N, we prove a kind of
binding-time correctness property for λIK+N that implies that no term equivalent to
𝜆 𝑥 : N. box𝑥 can exist.

Normalization for Fitch-Style Modal Calculi

49

Extension with Natural Number Literals and Multiplication. We extend λIK with a
type N, a construct lift for including natural number literals, and an operation ∗ for
multiplying terms of type N—as described in Fig. 17.

Ty 𝐴, 𝐵 F . . . | N Ctx Γ F . . .

N-Lift

Γ ⊢ lift𝑘 : N
𝑘 ∈ N

N-Mul
Γ ⊢ 𝑡1 : N Γ ⊢ 𝑡2 : N

Γ ⊢ 𝑡1 ∗ 𝑡2 : N

Fig. 17. Types, contexts, intrinsically-typed terms of λIK+N (omitting the unchanged rules of
Fig. 5)

We extend the equational theory of λIK with some rules such as lift𝑘1 ∗ lift𝑘2 ∼
lift (𝑘1 ∗ 𝑘2) (for natural numbers 𝑘1 and 𝑘2), lift 0 ∗ 𝑡 ∼ lift 0, 𝑡 ∼ lift 1 ∗ 𝑡 , 𝑡 ∗ lift𝑘 ∼
lift𝑘 ∗ 𝑡 , etc. The normal forms of λIK+N include those of λIK in addition to the
following.

Nf/N1
Γ ⊢nf lift 0 : N

Nf/N2
Γ ⊢ne 𝑛1 : N . . . Γ ⊢ne 𝑛 𝑗 : N

Γ ⊢nf lift𝑘 ∗ 𝑛1 ∗ · · · ∗ 𝑛 𝑗 : N
𝑘 ∈ N \ {0}

The normal form lift𝑘 ∗ 𝑛1 ∗ · · · ∗ 𝑛 𝑗 denotes a multiplication of a nonzero lit-
eral with a sequence of neutrals of type N, which can possibly be empty. The
term box (2 ∗ unbox (box 3)) from earlier can be represented in λIK+N as box (lift 2 ∗
unbox (box (lift 3))), and its normal form as box (lift 6). To extend the NbE model for
λIK to natural number literals and multiplication, we use the interpretation presented
by Valliappan, Russo, and Lindley [42] for normalizing arithmetic expressions. Omit-
ting the rule lift 0 ∗ 𝑡 ∼ lift 0, this interpretation also resembles the one constructed
systematically in the framework of Yallop, Glehn, and Kammar [43] for commutative
monoids.

Proving Binding-Time Correctness. Binding-time correctness for a term · ⊢ 𝑓 :
N⇒◻N can be stated similar to noninterference: it must be the case that · ⊢ app 𝑓 𝑢1 ∼
app 𝑓 𝑢2 : ◻N for any two arguments · ⊢ 𝑢1, 𝑢2 : N. The satisfaction of this property
implies that no well-typed term equivalent to 𝜆 𝑥 : N. box𝑥 exists, since applying it to
different arguments would yield different results. As before with noninterference, we
can prove this property by case analysis on the possible normal forms of 𝑓 . A normal
form of 𝑓 is either of the form 𝜆 𝑥. box (lift 0) or 𝜆 𝑥. box (lift𝑘 ∗𝑛1 ∗ · · · ∗𝑛 𝑗) for some
natural number 𝑘 and neutrals 𝑛1,. . . ,𝑛 𝑗 of typeN in context ·,N,µ. In the former case,
we are done immediately since 𝜆 𝑥. box (lift 0) is a constant function that evidently
satisfies the desired criterion. In the latter case, we observe by induction that no
such neutrals 𝑛𝑖 exist, and hence 𝑓 must be equivalent to the function 𝜆 𝑥. box (lift𝑘),
which is also constant.

As a part of binding-time correctness, we may also desire that nonconstant
terms ◻𝐴 ⇒ 𝐴 like 𝜆 𝑥 : ◻𝐴. unbox𝑥 be disallowed since a static computation
must not have a dynamic dependency. This can also be shown by following an
argument similar to the proof of noninterference in Subsection 5.2.

Modular Normalization with Types

50

Discussion. The operational semantics for staged computation is given by Davies
and Pfenning via translation to a dual-context calculus for IS4, where evaluation
under the introduction rule box for◻ is disallowed. While it is possible to implement
a normalization function for λIS4 that does not normalize under box, this then misses
certain reductions that are enabled by the translation. For instance, the term box (2 ∗
unbox (box 3)) is already in normal form if we simply disallow normalization under
box, while the translation ensures the reduction of unbox (box 3) by reducing the
term to box (2 ∗ 3). This mismatch, in addition to the lack of a model for their system,
makes the applicability of Fitch-style calculi for staged computation unclear.

6 RELATED AND FURTHERWORK
Fitch-Style Calculi. Fitch-style modal type systems [9, 29] adapt the proof methods

of Fitch-style natural deduction systems for modal logic. In a Fitch-style natural
deduction system, to eliminate a formula ◻𝐴, we open a so-called strict subordinate
proof and apply an “import” rule to produce a formula 𝐴. Fitch-style lambda calculi
achieve a similar effect, for example in λIK, by adding a µ to the context. To introduce
a formula ◻𝐴, on the other hand, we close a strict subordinate proof, and apply an
“export” rule to a formula 𝐴—which corresponds to removing a µ from the context.
In the possible-world reading, adding a µ corresponds to travelling to a future world,
and removing it corresponds to returning to the original world.
The Fitch-style calculus λIK was presented for the logic IK by Borghuis [9] and

Martini and Masini [29], and later investigated further by Clouston [12]. Clouston
showed that µ can be interpreted as the left adjoint of ◻, and proves a completeness
result for a term calculus that extends λIK with a type former ♦ that internalizes µ.
The extended term calculus is, however, somewhat unsatisfactory since the normal
forms do not enjoy the subformula property. Normalization was also considered
by Clouston, but only with Rule ◻-𝛽 and not Rule ◻-𝜂. The normalization result
presented here considers both rules, and the corresponding completeness result
achieved using the NbE model does not require the extension of λIK with ♦. The
decidability result that follows for the complete equational theory of λIK also appears
to have been an open problem prior to our work.

For the logic IS4, there appear to be several possible formulations of a Fitch-style
calculus, where the difference has to do with the definition of the rule λIS4/◻-Elim.
One possibility is to define unbox by explicitly recording the context extension
as a part of the term former. Davies and Pfenning [14, 15] present such a system
where they annotate the term former unbox as unbox𝑛 to denote the number of
µs. Another possibility is to define unbox without any explicit annotations, thus
leaving it ambiguous and to be inferred from a specific typing derivation. Such a
system is presented by Clouston [12], and also discussed by Davies and Pfenning. In
either formulation terms of type ◻𝐴⇒𝐴 (axiom T) and ◻𝐴⇒◻◻𝐴 (axiom 4) that
satisfy the comonad laws are derivable. As a result, both formulations exhibit the
logical equivalence ◻◻𝐴 ⇔ ◻𝐴. The primary difference lies in whether this logical
equivalence can also be shown to be an isomorphism, i.e. whether the semantics
of the modality ◻ is a comonad which is also idempotent. In Clouston’s categorical
semantics the modality◻ is interpreted by an idempotent comonad. The λIS4 calculus

Normalization for Fitch-Style Modal Calculi

51

presented here falls under the former category, where we record the extension
explicitly using a premise instead of an annotation.

Gratzer, Sterling, and Birkedal [22] present yet another possibility that reformulates
the system for IS4 in Clouston [12]. They further extend it with dependent types,
and also prove a normalization result using NbE with respect to an equational theory
that includes both Rule ◻-𝛽 and Rule ◻-𝜂. Although their approach is semantic in
the sense of using NbE, their semantic domain has a very syntactic flavour [22,
Section 3.2] that obscures the elegant possible-world interpretation. For example,
it is unclear as to how their NbE algorithm can be adapted to minor variations in
the syntax such as in λIK, λIK4 and λIT—a solution to which is at the very core of our
pursuit. This difference also has to do with the fact that they are interested in NbE
for type-checking (also called “untyped” or “defunctionalized” NbE), while we are
interested in NbE for well-typed terms (and thus “typed” NbE), which is better suited
for studying the underlying models. Furthermore, we also avoid several complications
that arise in accommodating dependent types in a Fitch-style calculus, which is the
main goal of their work.

Davies and Pfenning present their calculus for IS4 using a stack of contexts, which
they call “Kripke-style”, as opposed to the single Fitch-style context with a first-class
delimiting operator µ. The elimination rule unbox𝑛 for◻ in the Kripke-style calculus
for IS4 is indexed by an arbitrary natural number 𝑛 specifying the number of stack
frames the rule adds to the context stack of its premise. This index𝑛 corresponds to the
modal accessibility premise of the Fitch-style unbox rule presented in Fig. 11. As in the
Fitch-style presentation, Kripke-style calculi corresponding to the other logics IK, IT
and IK4 can be recovered by restricting the natural numbers 𝑛 for which the unbox𝑛
rule is available. Hu and Pientka [24] present a normalization by evaluation proof
for the Kripke-style calculi for all four logics IK, IT, IK4, and IS4. Their solution has
a syntactic flavour similar to Gratzer, Sterling, and Birkedal [22] and also does not
leverage the possible-world semantics. Furthermore, their proof is given for a single
parametric system that encompasses the modal logics of interest, which need not be
possible when we consider further modal axioms such as R : 𝐴⇒◻𝐴.
Possible-World Semantics for Fitch-Style Calculi. Given that Fitch-style natural

deduction for modal logic has itself been motivated by possible-world semantics, it
is only natural that Fitch-style calculi can also be given possible-world semantics.
It appears to be roughly understood that the µ operator models some notion of a
past world, but this has not been—to the best of our knowledge—made precise with
a concrete definition that is supported by a soundness and completeness result. As
noted earlier, this requires a minor refinement of the frame conditions that define
possible-world models for intuitionistic modal logic given by Božić and Došen [10].

Dual-Context Calculi. Dual-context calculi [34, 14, 15, 27] provide an alternative
approach to programming with the necessity modality using judgements of the
form Δ; Γ ⊢ 𝐴 where Δ is thought of as the modal context and Γ as the usual (or
“local”) one. As opposed to a “direct” eliminator as in Fitch-style calculi, dual-context
calculi feature a pattern-matching eliminator formulated as a let-construct. The
let-construct allows a type ◻𝐴 to be eliminated into an arbitrary type 𝐶 , which
induces an array of commuting conversions in the equational theory to attain normal

Modular Normalization with Types

52

forms that obey the subformula property. Furthermore, the inclusion of an 𝜂-law
for the ◻ type former complicates the ability to produce a unique normal form.
Normalization (and, more specifically, NbE) for a pattern-matching eliminator—while
certainly achievable—is a much more tedious endeavour, as evident from the work
on normalizing sum types [6, 28, 2], which suffer from a similar problem. Presumably
for this reason, none of the existing normalization results for dual-context calculi
consider the 𝜂-law. The possible-world semantics of dual-context calculi is also less
apparent, and it is unclear how NbE models can be constructed as instances of that
semantics.

Multimodal Type Theory (MTT). Gratzer et al. [23] present a multimodal dependent
type theory that for every choice of mode theory yields a dependent type theory with
multiple interacting modalities. In contrast to Fitch-style calculi, their system features
a variable rule that controls the use of variables of modal type in context. Further,
the elimination rule for modal types is formulated in the style of the let-construct
for dual-context calculi. In a recent result, Gratzer [21] proves normalization for
multimodal type theory. In spite of the generality of multimodal type theory, it is
worth noting that the normalization problem for Fitch-style calculi, when considering
the full equational theory, is not a special case of normalization for multimodal type
theory.

Further Modal Axioms. The possible-world semantics and NbE models presented
here only consider the logics IK, IT, IK4 and IS4. We wonder if it would be possible
to extend the ideas presented here to further modal axioms such as R : 𝐴⇒◻𝐴 and
GL : ◻(◻𝐴⇒𝐴) ⇒◻𝐴, especially considering that the calculi may differ in more
than just the elimination rule for the ◻ type.

DATA AVAILABILITY STATEMENT
The Agda mechanization [41] of the calculi λIK and λIS4 and their normalization
algorithms are available in the Zenodo repository.

ACKNOWLEDGMENTS
We would like to thank Andreas Abel, Thierry Coquand, and Graham Leigh for their
feedback on earlier versions of this work. We would also like to thank the anonymous
referees of both the paper and the artifact for their valuable comments and helpful
suggestions.
This work is supported by the Swedish Foundation for Strategic Research (SSF)

under the projects Octopi (Ref. RIT17-0023R) and WebSec (Ref. RIT17-0011).

REFERENCES
[1] Martín Abadi et al. “A Core Calculus of Dependency”. In: POPL ’99, Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999. Ed. by AndrewW. Appel
and Alex Aiken. ACM, 1999, pp. 147–160. doi: 10.1145/292540.292555. url:
https://doi.org/10.1145/292540.292555.

Normalization for Fitch-Style Modal Calculi

53

[2] Andreas Abel and Christian Sattler. “Normalization by Evaluation for Call-
By-Push-Value and Polarized Lambda Calculus”. In: Proceedings of the 21st
International Symposium on Principles and Practice of Programming Languages,
PPDP 2019, Porto, Portugal, October 7-9, 2019. Ed. by Ekaterina Komendantskaya.
ACM, 2019, 3:1–3:12. doi: 10.1145/3354166.3354168. url: https://doi.org/10.114
5/3354166.3354168.

[3] Andreas Abel et al., Agda 2 version 2.6.2.1, 2005–2021. Chalmers University of
Technology and Gothenburg University. lic: BSD3. url: https://wiki.portal.c
halmers.se/agda/pmwiki.php, vcs: https://github.com/agda/agda.

[4] Danel Ahman and Sam Staton. “Normalization by Evaluation and Algebraic
Effects”. In: Proceedings of the Twenty-ninth Conference on the Mathematical
Foundations of Programming Semantics, MFPS 2013, New Orleans, LA, USA, June
23-25, 2013. Ed. by Dexter Kozen and Michael W. Mislove. Vol. 298. Electronic
Notes in Theoretical Computer Science. Elsevier, 2013, pp. 51–69. doi: 10.1016
/j.entcs.2013.09.007. url: https://doi.org/10.1016/j.entcs.2013.09.007.

[5] Thorsten Altenkirch and Tarmo Uustalu. “Normalization by Evaluation for
lambda-2”. In: Functional and Logic Programming, 7th International Sympo-
sium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings. Ed. by Yukiyoshi
Kameyama and Peter J. Stuckey. Vol. 2998. Lecture Notes in Computer Sci-
ence. Springer, 2004, pp. 260–275. doi: 10.1007/978-3-540-24754-8_19. url:
https://doi.org/10.1007/978-3-540-24754-8%5C_19.

[6] Thorsten Altenkirch et al. “Normalization by Evaluation for Typed Lambda
Calculus with Coproducts”. In: 16th Annual IEEE Symposium on Logic in Com-
puter Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. IEEE
Computer Society, 2001, pp. 303–310. doi: 10.1109/LICS.2001.932506. url:
https://doi.org/10.1109/LICS.2001.932506.

[7] Lennart Augustsson et al., Haskell 1990. url: https://www.haskell.org/.
[8] Ulrich Berger and Helmut Schwichtenberg. “An Inverse of the Evaluation

Functional for Typed lambda-calculus”. In: Proceedings of the Sixth Annual
Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The Nether-
lands, July 15-18, 1991. IEEE Computer Society, 1991, pp. 203–211. doi: 10.1109
/LICS.1991.151645. url: https://doi.org/10.1109/LICS.1991.151645.

[9] Valentijn Anton Johan Borghuis. Coming to terms with modal logic. On the
interpretation of modalities in typed 𝜆-calculus, Dissertation, Technische Uni-
versiteit Eindhoven, Eindhoven, 1994. Technische Universiteit Eindhoven,
Eindhoven, 1994, pp. x+219.

[10] Milan Božić and Kosta Došen. “Models for normal intuitionistic modal logics”.
In: Studia Logica 43.3 (1984), pp. 217–245. issn: 0039-3215. doi: 10.1007/BF024
29840. url: https://doi.org/10.1007/BF02429840.

[11] VikramanChoudhury andNeel Krishnaswami. “Recovering puritywith comon-
ads and capabilities”. In: Proc. ACM Program. Lang. 4.ICFP (2020), 111:1–111:28.
doi: 10.1145/3408993. url: https://doi.org/10.1145/3408993.

[12] Ranald Clouston. “Fitch-Style Modal Lambda Calculi”. In: Foundations of Soft-
ware Science and Computation Structures - 21st International Conference, FOS-
SACS 2018, Held as Part of the European Joint Conferences on Theory and Practice

Modular Normalization with Types

54

of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings.
Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803. Lecture Notes in Computer
Science. Springer, 2018, pp. 258–275. doi: 10.1007/978-3-319-89366-2_14. url:
https://doi.org/10.1007/978-3-319-89366-2%5C_14.

[13] Catarina Coquand. “A Formalised Proof of the Soundness and Completeness
of a Simply Typed Lambda-Calculus with Explicit Substitutions”. In: High.
Order Symb. Comput. 15.1 (2002), pp. 57–90. doi: 10.1023/A:1019964114625.
url: https://doi.org/10.1023/A:1019964114625.

[14] Rowan Davies and Frank Pfenning. “AModal Analysis of Staged Computation”.
In: Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Papers Presented at the Symposium, St.
Petersburg Beach, Florida, USA, January 21-24, 1996. Ed. byHans-Juergen Boehm
and Guy L. Steele Jr. ACM Press, 1996, pp. 258–270. doi: 10.1145/237721.237788.
url: https://doi.org/10.1145/237721.237788.

[15] Rowan Davies and Frank Pfenning. “A modal analysis of staged computation”.
In: J. ACM 48.3 (2001), pp. 555–604. doi: 10.1145/382780.382785. url: https://d
oi.org/10.1145/382780.382785.

[16] W. B. Ewald. “Intuitionistic Tense and Modal Logic”. In: J. Symb. Log. 51.1
(1986), pp. 166–179. doi: 10.2307/2273953. url: https://doi.org/10.2307/2273953.

[17] Andrzej Filinski. “Normalization by Evaluation for the Computational Lambda-
Calculus”. In: Typed Lambda Calculi and Applications, 5th International Confer-
ence, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings. Ed. by Samson
Abramsky. Vol. 2044. Lecture Notes in Computer Science. Springer, 2001,
pp. 151–165. doi: 10.1007/3-540-45413-6_15. url: https://doi.org/10.1007/3-54
0-45413-6%5C_15.

[18] Gisèle Fischer-Servi. “Semantics for a class of intuitionistic modal calculi”. In:
Italian studies in the philosophy of science. Vol. 47. Boston Stud. Philos. Sci.
Reidel, Dordrecht-Boston, Mass., 1981, pp. 59–72.

[19] Phil Freeman, PureScript 2013. url: https://www.purescript.org/.
[20] Joseph A. Goguen and José Meseguer. “Security Policies and Security Models”.

In: 1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28,
1982. IEEE Computer Society, 1982, pp. 11–20. doi: 10.1109/SP.1982.10014. url:
https://doi.org/10.1109/SP.1982.10014.

[21] Daniel Gratzer. “Normalization formultimodal type theory”. In:CoRR abs/2106.01414
(2021). arXiv: 2106.01414. url: https://arxiv.org/abs/2106.01414.

[22] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. “Implementing a modal
dependent type theory”. In: Proc. ACM Program. Lang. 3.ICFP (2019), 107:1–
107:29. doi: 10.1145/3341711. url: https://doi.org/10.1145/3341711.

[23] Daniel Gratzer et al. “Multimodal Dependent Type Theory”. In: LICS ’20:
35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020. Ed. byHolgerHermanns et al. ACM, 2020, pp. 492–506.
doi: 10.1145/3373718.3394736. url: https://doi.org/10.1145/3373718.3394736.

[24] Jason Z. S. Hu and Brigitte Pientka. “An Investigation of Kripke-style Modal
Type Theories”. In: CoRR abs/2206.07823 (2022). arXiv: 2206.07823. url: https:
//arxiv.org/abs/2206.07823.

Normalization for Fitch-Style Modal Calculi

55

[25] C. Barry Jay and Neil Ghani. “The Virtues of Eta-Expansion”. In: J. Funct.
Program. 5.2 (1995), pp. 135–154. doi: 10.1017/S0956796800001301. url: https:
//doi.org/10.1017/S0956796800001301.

[26] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and
automatic program generation. Prentice Hall international series in computer
science. Prentice Hall, 1993. isbn: 978-0-13-020249-9.

[27] G. A. Kavvos. “Dual-Context Calculi for Modal Logic”. In: Log. Methods Comput.
Sci. 16.3 (2020). url: https://lmcs.episciences.org/6722.

[28] Sam Lindley. “Extensional Rewriting with Sums”. In: Typed Lambda Calculi
and Applications, 8th International Conference, TLCA 2007, Paris, France, June
26-28, 2007, Proceedings. Ed. by Simona Ronchi Della Rocca. Vol. 4583. Lecture
Notes in Computer Science. Springer, 2007, pp. 255–271. doi: 10.1007/978-3-5
40-73228-0_19. url: https://doi.org/10.1007/978-3-540-73228-0%5C_19.

[29] Simone Martini and Andrea Masini. “A computational interpretation of modal
proofs”. In: Proof theory of modal logic (Hamburg, 1993). Vol. 2. Appl. Log. Ser.
Kluwer Acad. Publ., Dordrecht, 1996, pp. 213–241. doi: 10.1007/978-94-017-27
98-3_12. url: https://doi.org/10.1007/978-94-017-2798-3_12.

[30] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT
Press, 1990. isbn: 978-0-262-63132-7.

[31] Kenji Miyamoto and Atsushi Igarashi. “A modal foundation for secure infor-
mation flow”. In: In Proceedings of IEEE Foundations of Computer Security (FCS).
2004, pp. 187–203.

[32] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In: Proceed-
ings of the Fourth Annual Symposium on Logic in Computer Science (LICS ’89),
Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 1989,
pp. 14–23. doi: 10.1109/LICS.1989.39155. url: https://doi.org/10.1109/LICS.198
9.39155.

[33] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1
(1991), pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url: https://doi.org/10.1
016/0890-5401(91)90052-4.

[34] Frank Pfenning and Rowan Davies. “A judgmental reconstruction of modal
logic”. In: Math. Struct. Comput. Sci. 11.4 (2001), pp. 511–540. doi: 10.1017/S09
60129501003322. url: https://doi.org/10.1017/S0960129501003322.

[35] Gordon D. Plotkin and Colin Stirling. “A Framework for Intuitionistic Modal
Logics”. In: Proceedings of the 1st Conference on Theoretical Aspects of Reasoning
about Knowledge, Monterey, CA, USA, March 1986. Ed. by Joseph Y. Halpern.
Morgan Kaufmann, 1986, pp. 399–406.

[36] Alejandro Russo, Koen Claessen, and John Hughes. “A library for light-weight
information-flow security in haskell”. In: Proceedings of the 1st ACM SIGPLAN
Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008.
Ed. by Andy Gill. ACM, 2008, pp. 13–24. doi: 10.1145/1411286.1411289. url:
https://doi.org/10.1145/1411286.1411289.

[37] Andrei Sabelfeld and Andrew C. Myers. “Language-based information-flow
security”. In: IEEE J. Sel. Areas Commun. 21.1 (2003), pp. 5–19. doi: 10.1109
/JSAC.2002.806121. url: https://doi.org/10.1109/JSAC.2002.806121.

Modular Normalization with Types

56

[38] Naokata Shikuma and Atsushi Igarashi. “Proving Noninterference by a Fully
Complete Translation to the Simply Typed Lambda-Calculus”. In: Log. Methods
Comput. Sci. 4.3 (2008). doi: 10.2168/LMCS-4(3:10)2008. url: https://doi.org/10
.2168/LMCS-4(3:10)2008.

[39] Alex K. Simpson. “The proof theory and semantics of intuitionistic modal
logic”. PhD thesis. University of Edinburgh, UK, 1994. url: http://hdl.handle.n
et/1842/407.

[40] Carlos Tomé Cortiñas and Nachiappan Valliappan. “Simple Noninterference
by Normalization”. In: Proceedings of the 14th ACM SIGSAC Workshop on
Programming Languages and Analysis for Security, CCS 2019, London, United
Kingdom, November 11-15, 2019. Ed. by Piotr Mardziel and Niki Vazou. ACM,
2019, pp. 61–72. doi: 10.1145/3338504.3357342. url: https://doi.org/10.1145/33
38504.3357342.

[41] Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas, Artifact for
“Normalization for Fitch-Style Modal Calculi” version 1.1.0, Aug. 2022. lic: CC-
BY-4.0. doi: 10.5281/zenodo.6957191, url: https://doi.org/10.5281/zenodo.695
7191.

[42] Nachiappan Valliappan, Alejandro Russo, and Sam Lindley. “Practical normal-
ization by evaluation for EDSLs”. In: Haskell 2021: Proceedings of the 14th ACM
SIGPLAN International Symposium on Haskell, Virtual Event, Korea, August
26-27, 2021. Ed. by Jurriaan Hage. ACM, 2021, pp. 56–70. doi: 10.1145/3471874
.3472983. url: https://doi.org/10.1145/3471874.3472983.

[43] Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. “Partially-static data
as free extension of algebras”. In: Proc. ACM Program. Lang. 2.ICFP (2018),
100:1–100:30. doi: 10.1145/3236795. url: https://doi.org/10.1145/3236795.

Normalization for Fitch-Style Modal Calculi

57

B
Practical Normalization by Evaluation for
EDSLs

Abstract. Embedded domain-specific languages (eDSLs) are typically imple-
mented in a rich host language, such as Haskell, using a combination of deep
and shallow embedding techniques. While such a combination enables pro-
grammers to exploit the execution mechanism of Haskell to build and special-
ize eDSL programs, it blurs the distinction between the host language and the
eDSL. As a consequence, extension with features such as sums and effects re-
quires a significant amount of ingenuity from the eDSL designer. In this paper,
we demonstrate that Normalization by Evaluation (NbE) provides a principled
framework for building, extending, and customizing eDSLs. We present a com-
prehensive treatment of NbE for deeply embedded eDSLs in Haskell that in-
volves a rich set of features such as sums, arrays, exceptions and state, while
addressing practical concerns about normalization such as code expansion and
the addition of domain-specific features.

59

1 INTRODUCTION
An embedded domain-specific language (eDSL) [24, 26] is a seamless implementa-
tion of a domain-specific language (DSL) as a library in a host language. Haskell
is particularly well suited as a host for eDSLs as witnessed by the variety of prac-
tical Haskell eDSLs covering domains as diverse as circuit design [12], database
querying [25], digital signal processing [6], graphics acceleration [14], and security
[38]. Haskell eDSL developers have at their disposal all of Haskell’s features such
as higher-order functions, extensible syntax, and a rich type-system. It is common
to represent programs in an eDSL using a data type that denotes them explicitly,
together with compilers and interpreters that manipulate values of this type. Let us
consider such a data type Exp :: ∗ → ∗ parameterized by the type of the expression
it denotes. Whereas a value of type Int in Haskell denotes an integer value, a value
of type Exp Int denotes an integer expression. (We use the words “program” and
“expression” interchangeably in the rest of the paper.)

Often, eDSL designers face a choice between either adding complex features to an
eDSL or keeping the core eDSL simple and exploiting the host language to construct
programs. Should the eDSL support pairs in expressions (Exp (a, b)), or should it use
pairs of expressions ((Exp a, Exp b))? Should the eDSL support functions (Exp (Int →
Int)) directly or should it instead rely on Haskell functions (Exp Int → Exp Int) to
build programs? As the complexity increases, it can become difficult to draw a line
between the end of the host language and the beginning of the eDSL.
In an eDSL program we may think of a value of type Int as a static integer that

is known at compile-time, and a value of type Exp Int as a dynamic integer that
is known only at runtime. The stage separation of values as static and dynamic
corresponds to a manual form of binding-time analysis in partial evaluation [27],
and presents an opportunity to exploit Haskell’s execution mechanism to evaluate
static computations in an eDSL program. In other words, static values belong to the
host language, whereas dynamic values belong to the eDSL. For example, consider the
following implementation of the exponentiation function that receives two integer
arguments n and x and returns 𝑥𝑛

𝑝𝑜𝑤𝑒𝑟1 :: Int → Exp Int → Exp Int
𝑝𝑜𝑤𝑒𝑟1 n x = if (n ⩽ 1) then x else (x ∗ (𝑝𝑜𝑤𝑒𝑟1 (n − 1))

where (∗) :: Exp Int → Exp Int → Exp Int. The type of 𝑝𝑜𝑤𝑒𝑟1 ensures the first
argument is static, and using this function, we can evaluate the expression 𝑝𝑜𝑤𝑒𝑟1 3 x
for some x :: Exp Int to generate the specialized expression x ∗ x ∗ x. Even though
the definition of 𝑝𝑜𝑤𝑒𝑟1 uses a conditional (if ... then ... else), comparison (n ⩽ 1)
and function recursion (𝑝𝑜𝑤𝑒𝑟1 (n − 1)), these have all been evaluated (by Haskell)
and removed in the specialized expression.
Though separation of stages enables the programmer to manually specify those

parts of an eDSL program that must be evaluated by Haskell, it also burdens them to
maintain multiple variants of the same program. In addition to 𝑝𝑜𝑤𝑒𝑟1, we may also
demand the following variants of the exponentiation function, each corresponding
to a different separation of stages for its arguments and result.

Practical Normalization by Evaluation for EDSLs

61

𝑝𝑜𝑤𝑒𝑟0 :: Int → Int → Int
𝑝𝑜𝑤𝑒𝑟1 :: Int → Exp Int → Exp Int
𝑝𝑜𝑤𝑒𝑟2 :: Exp Int → Int → Exp Int
𝑝𝑜𝑤𝑒𝑟3 :: Int → Int → Exp Int
𝑝𝑜𝑤𝑒𝑟4 :: Exp Int → Exp Int → Exp Int
𝑝𝑜𝑤𝑒𝑟5 :: Int → Exp (Int → Int)
𝑝𝑜𝑤𝑒𝑟6 :: Exp Int → Exp (Int → Int)
𝑝𝑜𝑤𝑒𝑟7 :: Exp (Int → Int → Int)
The need for multiple variants can be mitigated to some extent by using an over-
loading mechanism that automatically lifts Int to Exp Int, and converts back and
forth between some static and dynamic representations, such as Exp (a → b) and
Exp a → Exp b. This is done, for example, in Feldspar [6]. However, conversion
between representations does not work for types with multiple introduction forms
such as sum types: we cannot convert an expression of type Exp (Either a b) to
Either (Exp a) (Exp b) as the precise injection may not be known until runtime.
Normalization by Evaluation (NbE) [9], is a program specialization technique

that offers a solution to this problem by making specialization automatic, without
the need for manual stage separation. Using the NbE approach, all variants of the
exponentiation function can be recovered from the implementation of 𝑝𝑜𝑤𝑒𝑟7 ::
Exp (Int → Int → Int) depending on the availability of the arguments at the site of
invocation, i.e., depending on how 𝑝𝑜𝑤𝑒𝑟7 is used.
Unlike traditional normalization techniques, NbE bypasses rewriting entirely

and instead normalizes an expression by evaluating it using a special interpreter.
While NbE techniques for well-typed languages, also known as typed NbE, have
found a number of theoretical applications such as deciding equivalence of lambda-
calculus with sums [3], proving completeness [16], and coherence theorems [11], the
practical relevance of typed NbE remains relatively less well-understood. This paper
argues that typed NbE is particularly well-suited for specializing eDSL programs in
Haskell given the natural reliance on a host language. Indeed, existing techniques
for embedding DSLs in Haskell (e.g. the work of Svenningsson and Axelsson [40] on
combining deep and shallow embeddings), which may at first seem somewhat ad
hoc, can be viewed as instances of NbE.

The contributions of this paper are as follows.
• The first comprehensive practical treatment of NbE for eDSLs.
• A coherent combination of NbE techniques to deal with a rich set of features

such as sums, arrays, exceptions, and state—and in particular—a detailed and
extensible account of their interaction.

• Practical extensions of standard NbE techniques to implement a richer set
of domain-specific equations, and variations that control unnecessary code
expansion.

• Examples showing that NbE provides a principled alternative to ad hoc tech-
niques that combine deep and shallow embedding to implement fusion for
functions, loops and arrays in an eDSL.

The complete Haskell source code and examples in this paper can be found in the
accompanying material available at https://github.com/nachivpn/nbe-edsl.

Modular Normalization with Types

62

2 NORMALIZING EDSL PROGRAMS
This section showcases our implementation with examples of normalizing eDSL
programs using NbE. We begin with standard examples of normalizing the expo-
nentiation function and array operations, and then show examples that illustrate
normalization of programs that contain side-effects, branching, and an intricate
interaction between them.

Normalization is performed by a function norm :: Rf a ⇒ Exp a → Exp a, and the
result is observed by printing the resulting expression. The type class constraint Rf
limits the type of an expression to the types recognized by the eDSL, and is defined
along with the data type Exp in the next section. The name Rf is short for reifiable. For
convenience, we do not programwith the constructors of Exp directly, and instead use
derived combinators and “smart constructors” that provide a programming interface
to the eDSL. This means that the observed result of normalizing an eDSL program is
that of its internal representation, and may not directly resemble the surface program.
We make use of a form of higher-order abstract syntax (HOAS) [34] in order

to repurpose the binding features of Haskell in the eDSL. Thus the constructor
that constructs an expression of a function type Exp (a → b) (Lam in Figure 2)
takes a Haskell function on expressions Exp a → Exp b as its argument. Our
focus here is on practical implementation so we do not concern ourselves with
subtleties such as ruling out so called exotic terms or exotic types [5] in the internal
representation of expressions. Nevertheless, it is a routine exercise to adapt our
approach to use standard techniques to preclude such infelicities, for instance by
using an abstract type to hide the concrete type constructors [36] or moving to a
tagless representation [5, 13] whereby the smart constructors are first-class.

Normalizing exponentiation. Consider again the exponentiation function from the
previous section, and suppose that it is implemented as follows.

power :: Exp (Int → Int → Int)
power = lam $ 𝜆n → lam $ 𝜆x → rec n (f x) 1

where f x = lam $ 𝜆 → lam $ 𝜆acc → (x ∗ acc)

This implementation corresponds to the 𝑝𝑜𝑤𝑒𝑟7 variant, and is implemented using
expression combinators: lam :: (Exp a → Exp b) → Exp (a → b) is a lambda
expression combinator and rec :: Exp Int → Exp (Int → a → a) → Exp a →
Exp a is a primitive recursion combinator such that rec n g a is equivalent to
g 1 (g 2 (...(g n a))). Although possible, note that the type of rec is not entirely
wrapped under Exp as Exp (Int → (Int → a → a) → a → a). This choice prevents
unnecessary clutter caused by explicit function application in the expression language,
and trades some specialization power (i.e., the subsumption of some stage separations)
for a more convenient interface. We make this choice for all primitive combinators
that require multiple arguments.
An expression of a function type can be applied using the combinator app ::

Exp (a → b) → Exp a → Exp b as app (power 3), where the argument is a numeral
expression 3 :: Exp Int. We can normalize this expression in the Haskell interpreter
GHCi using the function norm as follows.

Practical Normalization by Evaluation for EDSLs

63

∗NbE.OpenNbE> norm (app power 3)
𝜆x .(x ∗ (x ∗ x))
The result is a pretty-printed representation of the expression syntax of the Exp
data type—here a function that returns the cube of its argument. Observe that the
result is slightly more optimal than that of a textbook partial evaluator that returns
𝜆x .(x ∗ (x ∗ (x ∗1))) by unrolling the recursion. This optimization is a simple instance
of NbE’s ability to aggressively reduce arithmetic expressions even in the presence
of unknown values—we return to this in Section 6.
Note here that the specialization of power is automatic and there was no need

to manually separate the stages of arguments as static (Int) and dynamic (Exp Int).
We consider the entire expression to be dynamic, and leave it to the normalizer to
identify the best specialization strategy.
As another example, consider normalizing an invocation of power with flipped

arguments using a utility function flip′.

∗NbE.OpenNbE> norm (app (flip′ power) 3)
𝜆n.(Rec n (𝜆y.𝜆acc.(3 ∗ acc)) 1)
Observe that the (expected) definition of flip′ has been removed in the result, pro-
ducing a more optimal function.

Normalizing array operations. Normalization can be used to achieve fusion of
operations over arrays such as map and fold [33]. We consider immutable pull
arrays [41] in our eDSL, and an expression of the array type is denoted by the type
Exp (Arr a), where a denotes the type of the elements in the array. The map and fold
operations are given by derived combinators, whose types and corresponding fusion
laws are given as below.

mapArr :: Exp (a → b) → Exp (Arr a) → Exp (Arr b)
foldArr :: Exp (b → a → b) → Exp b → Exp (Arr a) → Exp b
-- fusion laws:
-- 1. mapArr f (mapArr g arr) = mapArr (f . g) arr
-- 2. foldrArr f x (mapArr g arr) = foldArr (f . g) x arr

These combinators are derived using simpler expression constructors, that for e.g.,
create an array (NewArr), or perform recursion (Rec), and the fusion laws follow from
the equations that specify their behavior.

Using these combinators, we may implement a function (expression)mapMap that
maps twice over a given argument array, first with the function (+1), and then with
(+2).
mapMap :: Exp (Arr Int → Arr Int)
mapMap = lam $ 𝜆arr →

mapArr (lam (+2)) (mapArr (lam (+1)) arr)
By the first fusion law, this expression is equivalent to one that maps once with (+3)
as: mapArr (lam (+3)) arr . Normalizing mapMap returns a new array which has the
same length as the argument array arr , and whose elements are the elements of arr
incremented by 3.

Modular Normalization with Types

64

∗NbE.OpenNbE> norm mapMap
𝜆arr .(NewArr (LenArr arr) (𝜆i.(arr ! i) + 3))
The result is indeed the expression constructed by applying the derived combinator
mapArr as mapArr (lam (+3)) arr . Besides map fusion, NbE also eliminates the
function composition from the fused function (+2) ◦ (+1) and performs constant
folding to obtain (+3).

To illustrate the second fusion law, consider the following function, mapFold, that
first maps (+2) over a given array and then computes the sum of the result using
foldArr .

mapFold :: Exp (Arr Int → Int)
mapFold = lam $ 𝜆arr → foldArr go 0 (mapArr (lam (+2)) arr)
where go = lam $ 𝜆acc → lam $ 𝜆x → acc + x

By the second fusion law, this expression is equivalent to one which simply folds the
entire array as: foldArr (lam (𝜆acc → lam (𝜆x → acc + x + 2))) 0 arr . Normalizing
mapFold yields the following result.

∗NbE.OpenNbE> norm mapFold
𝜆arr .(Rec (LenArr arr) (𝜆i.𝜆acc.acc + (arr ! i) + 2) 0)
The normalized function receives an argument array, and performs recursion over its
length to compute the sum of its elements, each of which has been incremented by 2.

Normalizing branching programs. Branching programs, or programs that perform
a case analysis over a value of a sum type, complicate normalization. The difficulty
arises from the fact that the outcome of a case analysis over an unknown value cannot
be determined at normalization time. NbE offers a modular solution to address this
difficulty and achieve normalization for branching programs, as we shall see later in
Section 4.

Consider the following branching program, prgBr , that illustrates a scenario where
map fusion on arrays is interrupted by a case analysis on an unknown value.

prgBr :: Exp (Either Int Int → Arr Int → Arr Int)
prgBr = lam $ 𝜆scr → lam $ 𝜆arr →

mapArr (lam (+1)) $ case′ scr
(lam $ 𝜆x → mapArr (lam (+x)) arr)
(lam $ 𝜆y → arr)

It performs a case analysis using the combinator case′ ::Exp (Either a b) → Exp (a →
c) → Exp (b → c) on the argument scr (an unknown value), and if the left injection
is found with an integer x, it returns an array that increments elements of arr by
x, else arr is returned as found otherwise. The array returned by case′ is further
incremented by 1.

Normalizing prgBr yields the following result.

∗NbE.OpenNbE> norm prgBr
(𝜆scr .(𝜆arr .NewArr (LenArr arr)

(𝜆i.Case scr (𝜆x .((arr ! i) + x + 1)) (𝜆y.((arr ! i) + 1)))))

Practical Normalization by Evaluation for EDSLs

65

The normalized function returns a new array whose elements are given by performing
case analysis on scr . Observe that the effect of mapArr (lam (+1)) in prgBr has been
fused with the application of mapArr in the first branch, and left unaltered in the
second branch. The normalized program delays case analysis on scr to the point at
which it is required, thus avoiding the materialisation of an intermediate array.

Normalizing stateful programs. Programs with side-effects can be also normalized
using NbE, and the following example illustrates such a program that writes to and
reads from a global state in a State monad.
prgSt :: Exp (Arr Int → State (Arr Int) Int)
prgSt = lam $ 𝜆arr →

put (mapArr (lam (+2)) arr)
≫𝑠𝑡 put (mapArr (lam (+1)) arr
≫𝑠𝑡 get ≫=𝑠𝑡 (lam $ 𝜆arr′ → 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑡 (ixArr arr′ 0)))

The program prgSt receives an integer array arr , and returns an Int by writing to and
reading from (using combinators get and put) a global state that contains an array of
type Arr Int. Precisely, it performs the following actions (sequenced using monadic
combinators ≫𝑠𝑡 and ≫=𝑠𝑡):

• writes the result of mapping over arr with (+2)
• writes the result of mapping over arr with (+1)
• reads the array from state, and returns its first element

The combinators put, get, ≫𝑠𝑡 , ≫=𝑠𝑡 and 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑡 have their expected types lifted to
expressions. For example, put :: Exp s → Exp (State s ()) and get :: Exp (State s s).

Normalizing prgSt yields the following result.
∗NbE.OpenNbE> norm prgSt
𝜆arr .(Get >>= 𝜆s.(Put (NewArr (LenArr arr) (𝜆i.(arr ! i) + 1))

>> return ((arr ! 0) + 1)))
The resulting program puts a new array that contains the elements of the original
array incremented by 1, and returns the head of the original array, also incremented
by 1. The first put operation in prgSt is removed as it is overwritten by the subsequent
put. Similarly, the operation get and the intermediate array arr′ in prgSt are also
removed, as the array in the state is known locally from the previous put operation.
The Get in the result is redundant as the state s is never used. This Get is introduced
by the normalizer as a consequence of 𝜂-expansion (see Section 5). We show later, in
Section 6, how such redundancy in generated code can be eliminated by disabling
𝜂-expansion.

Normalizing branching stateful programs. The presence of side-effects and branch-
ing in the same language creates subtle interactions between the primitives that must
be considered when implementing normalization. To illustrate that our NbE proce-
dure can also be applied seamlessly to their combination, we consider the following
program that combines the last two examples.
prgBrSt :: Exp (Either Int Int → Arr Int → State (Arr Int) Int)
prgBrSt = lam $ 𝜆scr → lam $ 𝜆arr →

put (mapArr (lam (+1)) arr)

Modular Normalization with Types

66

-- Expressions, neutrals and normal forms
data Exp a where ...
data Ne a where ...
data Nf a where ...

-- Embedding functions
embNe :: Ne a → Exp a
embNf :: Nf a → Exp a

-- NbE semantics
class Rf a where
type Sem a :: ∗
reify :: Sem a → Nf a
reflect :: Ne a → Sem a

-- Evaluation function
eval :: Rf a ⇒ Exp a → Sem a

-- Normalization function
norm :: Rf a ⇒ Exp a → Exp a
norm = embNf ◦ reify ◦ eval

Fig. 1. Components of NbE

≫𝑠𝑡 (case′ scr
(lam $ 𝜆x → put (mapArr (lam (+x)) arr))
(lam $ 𝜆y → return unit))

≫𝑠𝑡 get ≫=𝑠𝑡 (lam (𝜆arr′ → 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑡 (ixArr arr′ 0))))
Unlike in prgSt, the first put here cannot be eliminated as the second branch does
not have a subsequent put. Moreover, elimination of get here is less straightforward
as we cannot readily determine the value of the array in the state.

Normalizing prgBrSt yields the following result.
∗NbE.OpenNbE> norm prgBrSt
𝜆scr .(𝜆arr .(Get >>= (𝜆s.(Case scr of

(𝜆x .(Put (NewArr (LenArr arr) (𝜆i.(arr ! i) + x))
>> Return ((arr ! 0) + x)))

(𝜆y.(Put (NewArr (LenArr arr) (𝜆i.(arr ! i) + 1))
>> Return ((arr ! 0) + 1)))))))

The resulting program pattern matches on scr , performs appropriate put operations
and returns the expected result individually on each branch. The first put operation,
i,e., put (mapArr (lam (+1)) arr) is discarded in the first branch but preserved in
the latter!

3 NBE FOR AN EDSL CORE
NbE is the process of evaluating, or interpreting, expressions of a language in a
semantic domain and then obtaining normal forms by reifying, or extracting, normal
forms from values in the semantic domain. The key idea behind NbE is to leverage

Practical Normalization by Evaluation for EDSLs

67

data Exp a where
Var :: Rf a ⇒ String → Exp a
Lift :: Base a ⇒ a → Exp a
Lam :: (Rf a, Rf b) ⇒ (Exp a → Exp b) → Exp (a → b)
App :: (Rf a, Rf b) ⇒ Exp (a → b) → Exp a → Exp b
Unit :: Exp ()
Pair :: (Rf a, Rf b) ⇒ Exp a → Exp b → Exp (a, b)
Fst :: (Rf a, Rf b) ⇒ Exp (a, b) → Exp a
Snd :: (Rf a, Rf b) ⇒ Exp (a, b) → Exp b
Mul :: Exp Int → Exp Int → Exp Int
Add :: Exp Int → Exp Int → Exp Int
Rec :: Rf a ⇒ Exp Int

→ Exp (Int → a → a) → Exp a → Exp a

Fig. 2. Basic core expression language

an (often non-standard) evaluator implemented in the host language to normalize
expressions in the object language—hence the name normalization by evaluation.
Figure 1 summarizes the components of NbE in our implementation. The object

language is defined by the expression data type Exp, and its normal forms are defined
by Nf and Ne (a subcategory of normal forms called neutrals). Unlike a traditional
evaluator, an NbE evaluator interprets expressions in a semantic domain that is
carefully chosen such that normal forms can be reified from it. The type class Rf
specifies the requirements of such a semantic domain.
In the class Rf , the type family Sem maps types in the object language to the

Haskell types that interpret them. The definition of Rf requires that an interpretation
of a type be chosen such that we can also implement the functions reify and reflect.
The function reify performs reification, and the function reflect performs a process
known as reflection. Reflection inserts neutral expressions into the semantic domain,
and is used to evaluate free variables whose values are unknown. Reflection is crucial
to reifying functions: to convert a semantic function to a syntactic one, we apply it
to a semantic value given by the reflecting the argument variable of the syntactic
function. Our syntax for functions calls for a slightly different treatment, as we shall
see shortly.

In this section, we discuss the implementation of NbE for an eDSL core language
that is defined by the Exp data type. This language is based on a simply-typed lambda
calculus (STLC) with product and base types, extended with primitive recursion
and simple arithmetic operations. We later extend it further with array and sum
types (Section 4), exception and state effects (Section 5), and other uninterpreted
primitives (Section 6). These features have been chosen to illustrate the practical
applicability, extensibility, and customizability of NbE to a class of functional eDSLs
like Feldspar [6], Haski [42], and others [4, 40] found in eDSL literature.

Figure 2 summarizes the pure fragment of the core expression syntax. It consists of
expression constructors for unknowns (Var), constants (Lift), functions (Lam, App),
products (Pair , Fst, Snd), arithmetic operations (Mul, Add), and primitive recursion

Modular Normalization with Types

68

(Rec). The constructor Var allows us to insert unbound free variables, and Lift allows
us to lift constant values of primitive base types (identified by the type class Base)
directly to expressions. For example, instances Base Int and Base String allow us to
lift integers and strings to expressions of type Exp Int and Exp String respectively.

Function and product types. To implement NbE for a fragment of the language
under consideration, we begin by specifying the equations of interest, and identifying
normal forms of these equations. The equations for the fragment of function and
product types are specified as follows.

f :: Exp (a → b) ≈ Lam (App f)
App (Lam f) e ≈ f e

p :: Exp (a, b) ≈ Pair (Fst p) (Snd p)
Fst (Pair e1 e2) ≈ e1
Snd (Pair e1 e2) ≈ e2

The type directed equations, or 𝜂-laws, specify the structure of the resulting normal
forms, and the reduction laws, or 𝛽-laws, specify how expressions should be reduced.

To a first approximation, neutrals denote expressions whose reduction is stuck at
unknowns, and normal forms denote value expressions. A normal form in NbE only
needs to be some canonical element in the equivalence class of expressions identified
by the equations, but it is often helpful to think of it as an expression that cannot be
reduced further by applying the 𝛽 laws by orienting them from left to right, and has
a canonical shape as dictated by the 𝜂 law. For this fragment, we define neutral and
normal forms as follows, resembling 𝛽-short 𝜂-long normal forms in STLC.

data Ne a where
NVar :: Rf a ⇒ String → Ne a
NApp :: (Rf a, Rf b) ⇒ Ne (a → b) → Nf a → Ne b
NFst :: (Rf a, Rf b) ⇒ Ne (a, b) → Ne a
NSnd :: (Rf a, Rf b) ⇒ Ne (a, b) → Ne b

data Nf where
NUp :: Base a ⇒ Ne a → Nf a
NUnit :: Nf ()
NLam :: (Rf a, Rf b) ⇒ (Exp a → Nf b) → Nf (a → b)
NPair :: (Rf a, Rf b) ⇒ Nf a → Nf b → Nf (a, b)

Observe that a normal form of type Nf (a → b) cannot be reduced further by
applying the 𝛽-law on any of its subexpressions, and it must be constructed by NLam.
This property of normal forms can as well be observed for products and all other
types under consideration in this paper.
The normal form constructor for functions, NLam, receives an argument of type

Exp a → Nf b instead of the more restrictive type Nf a → Nf b. This is to allow the
syntactic embedding—i.e, without invoking functions that involve semantics, such as
eval or reify—of normal forms to expressions via embNf by mapping NLam to Lam,
which would not be possible with the latter option.

After the identification of suitable normal forms, it remains to define a semantic
domain that supports the reification of normal forms and evaluation of terms. The

Practical Normalization by Evaluation for EDSLs

69

semantic domain for product and function types are readily available in Haskell, so
we simply interpret them by their Haskell counterparts by defining instances of Rf
as follows.
instance Rf () where

type Sem () = ()
reify = NUnit
reflect = ()

instance (Rf a, Rf b) ⇒ Rf (a, b) where
type Sem (a, b) = (Sem a, Sem b)
reify p = NPair (reify (fst p)) (reify (snd p))
reflect n = (reflect (NFst n), reflect (NSnd n))

instance (Rf a, Rf b) ⇒ Rf (a → b) where
type Sem (a → b) = Sem a → Sem b
reify f = NLam (reify ◦ f ◦ eval)
reflect n = 𝜆y → reflect (NApp n (reify y))

The implementation of functions reify and reflect is achieved by converting from
and to Haskell values. To reify a pair p :: (Sem a, Sem b), we construct a normal form
using the constructor NPair , whose arguments are obtained by recursively reifying
the projections of p. To reflect a neutral n :: Ne (a, b), we construct a pair whose
components are obtained by recursively reflecting the projections of n using neutral
constructors NFst and NSnd. On the other hand, to reify a function f :: Sem a →
Sem b, we evaluate the expression argument1 provided by the constructor NLam
and recursively reify its application to f , and to reflect a neutral n :: Ne (a → b), we
recursively reflect the application of n using the constructorNAppwith the reification
of the semantic argument y.

Evaluation resembles a standard evaluator, with the exception of the Var and Lam
cases, as witnessed below.
eval (Var x :: Exp a) = reflect@a (NVar x)
eval Unit = ()
eval (Lam f) = 𝜆y → eval (f (embNf (reify y)))
eval (App f e) = (eval f) (eval e)
eval (Pair e e′) = (eval e, eval e′)
eval (Fst e) = fst (eval e)
eval (Snd e) = snd (eval e)
For the Var case, we use reflection to insert the neutral NVar x into the semantics,
and for the Lam case, we recursively evaluate the application of f to an expression
obtained by reifying and embedding the semantic argument y.
Reflection constructs a semantic value based on the type of a neutral, which

when reified, has the effect of 𝜂-expansion [9]. Evaluating an unknown Var "x" ::
Exp (() → ()) returns its reflection 𝜆y → (), which when reified yields the normal
formNLam (𝜆e → NUnit), where 𝜂-expansion has been applied for both the function
and unit types.
1Traditionally, reflection is sufficient since the argument in Lam is a variable, but our formulation demands
evaluation since it can be any expression.

Modular Normalization with Types

70

eval (Var "x" :: Exp (() → ()))
-- by definition
≡ reflect@(() → ()) (NVar "x")
-- reflecting neutral of type ‘Ne (() -> ())‘
≡ 𝜆y → reflect@() (NApp (NVar x) (reify y))
-- reflecting neutral of type ‘Ne ()‘
≡ 𝜆y → ()

reify@(() → ()) (𝜆y → ())
-- reifying value of type ‘() -> ()‘
≡ NLam (reify@() ◦ f ◦ eval)
-- function composition
≡ NLam (𝜆e → reify@() (f (eval e)))
-- reifying value of type ‘()‘
≡ NLam (𝜆e → NUnit)

Base types. The expression syntax can be freely extended with base types by
defining new instances of the type class Base. Normal forms of base types can either
be neutrals or values. While neutrals can be embedded into normal forms using the
constructor NUp, we extend the definition of normal forms with a constructor NLift
to embed values.

data Nf where ...
NLift :: Base a ⇒ a → Nf a

The semantic domain for base types resemble the definition of normal forms as
neutrals or values, which we illustrate for the types Int and String below.

instance Rf Int where
type Sem Int = Either (Ne Int) Int
reify x = either NUp NLift x
reflect n = Left n

instance Rf String where
type Sem Int = Either (Ne String) String
-- similar to above

For integers, we use the type Either (Ne Int) Int as the semantic domain for interpre-
tation, and similarly for strings we use Either (Ne String) String. Reification replaces
Left by NUp and Right by NLift, while reflection embeds a neutral into the semantic
domain using Left.
In the absence of primitives that return a value of base type, such as String, we

need not perform any further modifications. For base types with primitives, such
as Int, however, we must also extend evaluation and the definition of neutrals to
accommodate them.

For a simple treatment of integer expressions, let us suppose that we would like to
normalize them using the following equations.

Add (Lift x) (Lift y) ≈ Lift (x + y)
Mul (Lift x) (Lift y) ≈ Lift (x ∗ y)

Practical Normalization by Evaluation for EDSLs

71

data Exp a where ...
NewArr :: Rf a ⇒ Exp Int → Exp (Int → a) → Exp (Arr a)
LenArr :: Rf a ⇒ Exp (Arr a) → Exp Int
IxArr :: Rf a ⇒ Exp (Arr a) → Exp Int → Exp a
Inl :: (Rf a, Rf b) ⇒ Exp a → Exp (Either a b)
Inr :: (Rf a, Rf b) ⇒ Exp b → Exp (Either a b)
Case :: (Rf a, Rf b, Rf c) ⇒ Exp (Either a b)

→ Exp (a → c) → Exp (b → c) → Exp c

Fig. 3. Extension with arrays and sums

These equations specify that addition and multiplication must be performed when
both the operands are available as lifted integer values. In the absence of either, such
as in Add (Lift 2) (Var "x"), the expression cannot be reduced further, and must be
considered to be in normal form.
To implement these equations, we extend the definition of neutrals for stuck

applications of Add and Mul as follows.
data Ne a where ...

NAdd1 :: Ne Int → Int → Ne Int
NAdd2 :: Int → Ne Int → Ne Int
NAdd :: Ne Int → Ne Int → Ne Int
-- similarly NMul1, NMul2 and NMul

Following this, evaluation can be implemented using semantic functions add′,mul′ ::
Sem Int → Sem Int → Sem Int as below. These functions are implemented by
performing the corresponding operation when both the right injections are available,
and constructing neutrals otherwise.
eval (Add e e′) = add′ (eval e) (eval e′)
eval (Mul e e′) = mul′ (eval e) (eval e′)

4 NBE FOR ARRAYS AND SUMS
Figure 3 summarizes the extension of the core language with array and sum types.
The type Exp (Arr a) denotes an a array expression indexed by integers, and the type
Exp (Either a b) denotes a sum expression of type Either a b. The array operation
NewArr constructs a new array, LenArr computes the length of an array, and IxArr
indexes into an array. Sum types are formulated in the usual way with injections (Inl
and Inr) and case analysis (Case).

4.1 Arrays
Array primitives satisfy the following equations, where the first is 𝜂-expansion for
arrays, and the latter two are reductions for LenArr and IxArr respectively.
arr :: Exp (Arr a) ≈ NewArr (LenArr arr) (Lam (IxArr arr))
LenArr (NewArr n f) ≈ n
IxArr (NewArr n f) k ≈ App f k

Modular Normalization with Types

72

Neutral and normal forms are defined by placing stuck applications of LenArr and
IxArr in neutrals, and an array construction using NewArr in normal forms.
data Ne a where ...
NLenArr :: Rf a ⇒ Ne (Arr a) → Ne Int
NIxArr :: Rf a ⇒ Ne (Arr a) → Nf Int → Ne a

data Nf a where ...
NNewArr :: Rf a ⇒ Nf Int → (Exp Int → Nf a) → Nf (Arr a)

The semantic domain for arrays, defined by SArr below, is given by a refinement of a
shallow embedding of arrays in Haskell (called vectors in Feldspar [6]).
data SArr a where

SNewArr :: Sem Int → (Exp Int → a) → SArr a
instance (Rf a) ⇒ Rf (Arr a) where

type Sem (Arr a) = SArr (Sem a)
reify (SNewArr k f) = NNewArr (reify k) (reify ◦ f)
reflect n = SNewArr

(reflect (NLenArr n))
(reflect ◦ NIxArr n ◦ reify ◦ eval)

The constructor SNewArr constructs a semantic array from the length of an array,
given by a semantic integer Sem Int, and a function Exp Int → a that returns
elements of the array for a given index expression. Reification converts a semantic
array constructed using SNewArr to a syntactic one in normal form constructed
using NNewArr . Reflection, on the other hand, inserts a neutral n :: Exp (Arr a) into
semantics by constructing a semantic array with the same length and same elements
as n.

Evaluation is extended to arrays by interpreting NewArr as SNewArr , and the array
operations IxArr and LenArr by extracting the appropriate components of SNewArr .
eval (NewArr n f) = SNewArr (eval n) f
eval (IxArr arr i) = let (SNewArr f) = eval arr in f i
eval (LenArr arr) = let (SNewArr n) = eval arr in n

4.2 Sum Types
Equations and normal forms. Expressions of sum types are given the following

standard equations.
e :: Exp (Either a b) ≈ Case e Inl Inr
Case (Inl e) f g ≈ App f e
Case (Inr e) f g ≈ App g e
F (Case e g h) ≈ Case e (F ◦ g) (F ◦ h)
The first equation specifies a restricted 𝜂-expansion for sums. The second and third
equations are the standard 𝛽-rules for sums. The last equation is a commuting con-
version, where the function F denotes an elimination context, which arises from a
more general 𝜂-rule [29] and enables more opportunities to apply the 𝛽-rules [35].
This equation is further explained in Appendix A.1. Normal forms for sums comprise
injections and case analysis.

Practical Normalization by Evaluation for EDSLs

73

data Nf a where ...
NInl :: (Rf a, Rf b)

⇒ Nf a → Nf (Either a b)
NInr :: (Rf a, Rf b)

⇒ Nf b → Nf (Either a b)
NCase :: (Rf a, Rf b, Rf c) ⇒ Ne (Either a b)

→ (Exp a → Nf c) → (Exp b → Nf c) → Nf c

Unlike stuck applications of eliminators, such as NFst and NSnd, that we class as
neutral, we classify a stuck application of NCase as a normal form. This choice has
to do with the implementation of the commuting conversions for sums.

Classifying NCase as neutral does not force commuting reductions, and may cause
case analysis to prevent reductions by harboring introduction forms. For example,
defining NCase under neutrals would deem the following expression to be neutral,
and thus normal (via NUp).
NApp (NCase (NVar "x") (NLam id) (NLam id)) (NLift 1)
Placing NCase in normal forms, on the other hand, forces this expression to be
reduced further as below since a normal form of function type cannot be applied.
NCase (Var "x") (NLam $ 𝜆 → Lift 1) (NLam $ 𝜆 → Lift 1)

Semantic domain for sums. It is tempting to interpret sum types by their Haskell
counterpart, i.e., Sem (Either a b) = Either (Sem a) (Sem b). But this interpretation
is insufficient for NbE, and does not support reflection. For example, what should
be the reflection of the unknown Var "x" :: Exp (Either () ())? We cannot make a
choice over the Left or Right injection! To solve this dilemma, we define a semantic
domain that captures branching over neutrals (which subsume unknowns), and use
that to interpret sums.
data MDec a where

Leaf :: a → MDec a
Branch :: (Rf a, Rf b) ⇒ Ne (Either a b)

→ (Exp a → MDec c) → (Exp b → MDec c) → MDec c

instance Monad MDec where ...

instance (Rf a, Rf b) ⇒ Rf (Either a b) where
type Sem (Either a b) = MDec (Either (Sem a) (Sem b))
reify (Leaf (Left x)) = NInl (reify x)
reify (Leaf (Right x)) = NInr (reify x)
reify (Branch n f g) = NCase n (reify ◦ f) (reify ◦ g)
reflect n = Branch n

(Leaf ◦ Left ◦ eval)
(Leaf ◦ Right ◦ eval)

Intuitively, the data type MDec defines a decision tree (monad) that prevents us from
having tomake a choice during reflection. Unlike a value of type Either (Sem a) (Sem b),
a value of type MDec (Either (Sem a) (Sem b)) can be constructed using the Branch
constructor without making a choice. The Branch constructor requires us to handle

Modular Normalization with Types

74

both possible injections, and is the semantic equivalent of the normal form NCase—as
witnessed by the implementation of reify.

Evaluating case analysis. The introduction of sum types causes a subtle problem
for evaluation: consider the following expression of type Exp Int.
Case (Var "x") (Lam $ 𝜆 → Lift 1) (Lam $ 𝜆 → Lift 2)
While irreducible (and representable as a normal form), the semantic domain for
integers, i.e., Either (Ne Int) Int, has no room for its interpretation! How should this
Case expression of type Expr Int be evaluated as a value of type Either (Ne Int) Int?
We proceed to adapt our interpretation of Int (and similarly with String) as follows.
instance Rf Int where

type Sem Int = MDec (Either (Ne Int) Int) ...
instance Rf String where

type Sem Int = MDec (Either (Ne String) String) ...
In short, we place the decision tree monadMDec on top of the original interpretation
of Int allowing room for constructing case trees in the semantics. The problematic
integer expression from above can now be evaluated to:
Branch (NVar "x") (𝜆 → Right 1) (𝜆 → Right 2)
Reification and reflection can be implemented easily by adapting our previous imple-
mentation to deal with MDec along the lines of the Rf (Either a b) instance.

Following this change to the interpretation, we proceed with evaluation as below
using a semantic function run :: Rf a ⇒ MDec (Sem a) → Sem a that can be
implemented by induction on the type parameter a—which rephrases the branches
of the decision tree as semantic ones.
eval (Inl e) = Leaf (Left (eval e))
eval (Inr e) = Leaf (Right (eval e))
eval (Case s f g) = let s′ = eval s; f ′ = eval f ; g′ = eval g

in run (fmap (either f ′ g′) s′)
Not all type constructors require a modification of the semantic domain. In par-

ticular, all type constructors with a single introduction form and a corresponding
𝜂-rule (such as functions, products, and arrays) avoid this problem as we may per-
form 𝜂-expansion of the Case expression, followed by commuting conversions, to
represent the value in the semantic domain. For example, the following expression
of type Exp (Int, Int)
Case (Var "x") (Lam $ 𝜆 → Var "y") (Lam $ 𝜆 → Var "z")
can be 𝜂-expanded and then two commuting conversions applied to give
Pair

(Case (Var "x")
(Lam $ 𝜆 → Fst (Var "y")) (Lam $ 𝜆 → Fst (Var "z")),

Case (Var "x")
(Lam $ 𝜆 → Snd (Var "y")) (Lam $ 𝜆 → Snd (Var "z")))

which is interpreted as a pair of semantic integers:

Practical Normalization by Evaluation for EDSLs

75

data Exp a where ...
Throw :: Rf a ⇒ Exp String → Exp (Err a)
Catch :: Rf a ⇒ Exp (Err a)

→ Exp (String → Err a) → Exp (Err a)
Returnerr :: Rf a ⇒ Exp a → Exp (Err a)
Binderr :: (Rf a, Rf b) ⇒ Exp (Err a)

→ Exp (a → Err b) → Exp (Err b)

(a) Exceptions

data Exp a where ...
Get :: Rf s ⇒ Exp (State s s)
Put :: Rf s ⇒ Exp s → Exp (State s ())
Returnst :: (Rf s, Rf a) ⇒ Exp a → Exp (State s a)
Bindst :: (Rf s, Rf a, Rf b) ⇒ Exp (State s a)

→ Exp (a → State s b) → Exp (State s b)

(b) State

Fig. 4. Extension with exception and state effects

(Branch (NVar "x")
(𝜆 → NFst (NVar "y")) (𝜆 → NFst (NVar "z")),

Branch (NVar "x")
(𝜆 → NSnd (NVar "y")) (𝜆 → NSnd (NVar "z")))

This means that we need only to refine our interpretation of Int and String, where we
lack a combination of a single introduction form accompanied by a corresponding
𝜂-rule.

The above treatment of sums is sound and often suffices in practice, but it does
not capture all natural equations for sums. In Section 6 we outline how to augment
our implementation to eliminate repeated and redundant case splits.

5 NBE FOR MONADIC EFFECTS
Figure 4 summarizes the extension of the expression syntax respectively with excep-
tions and state formulated as monadic types. Exceptions consist of a throw operation
(Throw) to throw string exceptions, a catch operation (Catch) to handle exceptions,
along with the return (Returnerr), and bind (Binderr) of the monadic type Err . Stateful
computations are formulated similar to the State monad in Haskell, and consists of a
get operation (Get) to retrieve the state, a put operation (Put) to overwrite the state,
along with the return (Returnst), and bind (Bindst) of the monadic type State s.

Both monadic types (denoted M) are subject to the following equations, typically
called the monad laws.

m :: Exp (M a) ≈ Bind m Return
Bind (Return x) f ≈ App f x
Bind (Bind e1 f) g ≈ Bind e1 (Lam (𝜆x → Bind (App f x) g))

Modular Normalization with Types

76

The first equation is 𝜂-expansion for monads, the second 𝛽-reduction, and the third
a commuting conversion that arranges Bind operations in a right-associative chain.

5.1 Exceptions
As well as the monad laws, exception computations also obey the following equations.
The first equation is 𝜂-expansion and the second and third equations are 𝛽-reductions
for exceptions.

m :: Exp (Err a) ≈ Catch m Throw
Catch (Throw s) f ≈ App f s
Catch (Return x) f ≈ Return x

Notice here that there is a contention between two 𝜂 laws: one for the Err monad
and one specific to exceptions. What should be the 𝜂-expanded form of an expression
e ::Exp (Err a)? We must make a choice here, and we choose Catch (Binderr e Return)
Throw, where we first apply the 𝜂-rule for monads, and then apply the one for
exceptions. Our normal forms reflect this choice using a normal form constructor
NTryUnless that denotes a fusion of Binderr and Catch in normal form [8].

data Nf a where ...
NReturnerr :: Rf a ⇒ Nf a → Nf (Err a)
NThrow :: Rf a ⇒ Nf String → Nf (Err a)
NTryUnless :: (Rf a, Rf b) ⇒ Ne (Err a)

→ (Exp a → Nf (Err b))
→ (Exp String → Nf (Err b)) → Nf (Err b)

The constructorsNReturnerr andNThrow are the normal form counterparts of Returnerr
and Throw.
The semantic domain is defined by a data type MErr that closely parallels the

structure of normal forms.

data MErr a where
SReturnerr :: Rf a ⇒ a → MErr a
SThrow :: Rf a ⇒ Nf String → MErr a
STryUnless :: (Rf a, Rf b) ⇒ Ne (Err a)

→ (Exp a → MErr b)
→ (Exp String → MErr b) → MErr b

instance (Rf a) ⇒ Rf (Err a) where
type Sem (Err a) = MErr (Sem a)
reify (SReturnerr x) = NReturnerr (reify x)
reify (SThrow n) = NThrow n
reify (STryUnless n f g) = NTryUnless n (reify ◦ f) (reify ◦ g)
reflect n = STryUnless n (SReturnerr ◦ eval) (SThrow ◦ eval)

The data type definition of MErr gives rise to a semantic monad that can be used
to evaluate the monadic expression constructors Returnerr and Binderr . We evaluate
Throw using semantic constructor SThrow, and Catch using a semantic function catch′
that is implemented by pattern matching on its first argument.

Practical Normalization by Evaluation for EDSLs

77

eval (Returnerr e) = return (eval e)
eval (Binderr e f) = eval e >>= eval f
eval (Throw e) = SThrow (eval e)
eval (Catch e f) = catch′ (eval e) (eval f)
instance Monad MErr where ...
catch′ ::MErr sa → (Sem String → MErr sa) → MErr sa

The rest of the definitions can be found in Appendix A.3.

5.2 Stateful Computations
Similar to exceptions, stateful computations are also given equations specific to the
operations Put and Get, in addition to the monad laws.
m :: Exp (State s a) ≈ Get ≫=𝑠𝑡 (Lam (𝜆s → (Put s) ≫𝑠𝑡 m))
(Put x) ≫𝑠𝑡 ((Put y) ≫𝑠𝑡 m) ≈ (Put y) ≫𝑠𝑡 m
(Put x) ≫𝑠𝑡 (Bindst Get f) ≈ (Put x) ≫𝑠𝑡 (App f x)
We have an 𝜂 law as usual, and two reduction laws that reduce sequencing of Put
and Get operations. Note that the operator ≫=𝑠𝑡 is an alias for Bindst , and ≫𝑠𝑡 is a
shorthand defined as m ≫𝑠𝑡 m′ = Bindst m (Lam (𝜆 → m′)).

As with exceptions, there is a contention between two 𝜂-laws, and we choose the
𝜂-expanded form of an expression m :: Exp (State s a) to be
Get ≫=𝑠𝑡 (Lam $ 𝜆s → (Put s) ≫𝑠𝑡 (m ≫=𝑠𝑡 (Lam $ 𝜆x →

Get ≫=𝑠𝑡 (Lam $ 𝜆s′ → (Put s′) ≫𝑠𝑡 (Returnst x)))))
Our normal forms reflect this choice, while also ensuring that the expression they
denote cannot be further reduced by the 𝛽-laws.
data Nf a where ...

NGetPut :: (Rf s, Rf a)
⇒ (Exp s → (Nf s,NfStres s a)) → Nf (State s a)

data NfStres s a where
NReturnst :: (Rf s, Rf a) ⇒ Nf a → NfStres s (State s a)
NBindst :: (Rf s, Rf a, Rf b) ⇒ Ne (State s a)

→ (Exp a → Nf (State s b)) → NfStres s (State s b)
The data type NfStres defines a separate syntactic category of normal forms to capture
the following desired shape.
NGetPut $ 𝜆s1 → (s′1,NBindst n1 (Lam $ 𝜆e1 →

NGetPut $ 𝜆s2 → (s′2,NBindst n2 (Lam $ 𝜆e2 →
...

NReturnst x ...))))
Intuitively, a normal form of a state computation is a function constructed using
NGetPut that gets the global state and returns a new state to put along with a chain
of neutrals bound using NBindst ending with NReturnst . The constructor NBindst
denotes a stuck binding, and NReturnst returns a value in the monad. Since the
binding of a neutral may change the state, the definition of normal forms must allow
the state to be retrieved and modified after every binding.

Modular Normalization with Types

78

The semantic domain is given by data typesMSt andMStres that once again parallel
the structure of normal forms.
newtype MSt s a = SGetPut {

runMSt :: Sem s → (Sem s,MStres s a) }
data MStres s a where

SReturnst :: (Rf s, Rf a) ⇒ a → MStres s a
SBindst :: (Rf s, Rf a, Rf b) ⇒ Ne (State s a)

→ (Exp a → MSt s b) → MStres s b

instance (Rf s, Rf a) ⇒ Rf (State s a) where
type Sem (State s a) = MSt s (Sem a)
reify m = NGetPut $ (𝜆(s, r) → (reify s, reifyres r))

◦ runMSt m ◦ eval
where
reifyres ::MStres s (Sem a) → NfStres s a
reifyres (SReturnst x) = NReturnst (reify x)
reifyres (SBindst n f) = NBindst n (reify ◦ f)

reflect n = SGetPut $ 𝜆s → (s, SBindst n $ 𝜆e →
SGetPut $ 𝜆s′ → (s′, SReturnst (eval e)))

The interpretation of State s a as MSt s (Sem a), along with the definition of MSt
and MStres lends itself naturally to both reification and reflection.

Evaluation makes use of a monad instance for MSt s (defined in Appendix A.3) for
Returnst and Bindst , and the Get and Put constructs are evaluated using a combination
of the semantic constructors SGetPut and SReturnst .
eval (Returnst e) = return (eval e)
eval (Bindst e e′) = eval e >>= eval e′
eval (Get e) = SGetPut $ 𝜆s → (s, SReturnst s)
eval (Put e) = SGetPut $ 𝜆 → (eval e, SReturnst ())
instance Monad (MSt s) where ...

5.3 Interaction with Sum Types
As in the pure case, the semantic domains with effects also require refinement to
account for sums. Unlike in the pure case, it is insufficient to merely place the monad
MDec on top of the existing interpretation and requires a careful consideration of
the monadic operations. This is because case analysis can also be performed on the
result of a monadic bind and in between operations.

For the MErr monad, case distinction can be performed on the result of a monadic
bind, and we extend the data type definition with a constructor similar to Branch to
allow this.
data MErr a where ...

SCaseErr :: (Rf a, Rf b) ⇒ Ne (Either a b)
→ (Exp a → MErr c)
→ (Exp b → MErr c) → MErr c

The constructor SCaseErr is reified using the normal form constructor NCase.

Practical Normalization by Evaluation for EDSLs

79

For the MSt monad, on the other hand, case distinction can be performed both on
the result of a monadic bind and on the result of a retrieving the state using SGetPut.
We modify the definition ofMSt as follows, by placing theMDec monad on the result
of the functional argument to SGetPut.

newtype MSt s a = SGetPut {
runMState :: Sem s → MDec (Sem s,MStres s a) }

To retain reification, we modify the definition of normal forms in a similar fashion.

data Nf a where ...
NGetPut :: (Rf s, Rf a)

⇒ (Exp s → MDec (Nf s,NfStres s a)) → Nf (State s a)

The modifications performed in this section do not preclude the implementation
of semantic functions such as return, (>>=), catch′, etc., (see Appendix A.3), or the
embedding functions embNe and embNf .

6 PRACTICAL NBE EXTENSIONS AND VARIATIONS
The normalization procedures described in previous sections are adaptations of
NbE for simply typed lambda calculus, that strive to identify the normal form of an
expression as a canonical element of its equivalence class of semantically identical
expressions. This traditional approach to NbE suffers from the following problems
for practical eDSL applications:

• Our implementation 𝛽-reduces expressions as much as possible and𝜂-expands
expressions, yielding normal forms that are in 𝛽-short 𝜂-long form. Such
aggressive normalization can lead to unnecessary code explosion, which may
be harmful for code-generating eDSLs.

• The treatment of base types in Section 3 is insufficient for many practical
applications. For example, the expression Add (Var "x") (Lift 0) is not
reduced, while we would typically like it to be reduced to (Var "x").

• We have not yet explained how to incorporate uninterpreted primitives, that
is, primitives without equations that dictate their behaviour.

In this section, we show these three problems can be addressed by refining the
semantic domain used to implement NbE. Specifically, we present techniques to tame
code expansion in NbE, a variation of NbE for integers that performs more advanced
arithmetic reductions, and a recipe for adding uninterpreted primitives.

6.1 Taming Code Expansion
Disabling 𝜂-expansion using glueing. While 𝜂-expansion can be useful for some

applications such as deciding program equivalence, it may be unsuitable for other
applications such as code generation. For example, observe how the normalizer 𝜂
expands the unknown Var "f" :: Exp (Int → Arr Int).
∗NbE.OpenNbE> norm (Var "f" :: Exp (Int → Arr Int))
𝜆x .(NewArr (LenArr (f x)) (𝜆i.(f x ! i)))

Modular Normalization with Types

80

Our implementation of NbE applies 𝜂-expansion by default, but we show here how
𝜂-expansion can be selectively disabled using the glueing technique [17], yielding
(potentially) smaller normal forms.

We begin by modifying our definition of normal forms to allow neutrals to be
embedded directly.

data Nf a where ...
NUp :: Ne a → Nf a

We remove the type constraint Base a on the constructor NUp, which relaxes the
definition of normal forms to include, for example, the unknown Var "f" above as
NUp (NVar "f").
Let us suppose that we would like to disable 𝜂 expansion for function types. We

refine the semantic domain of function types to include a syntactic component by
“glueing” (i.e. pairing) it with normal forms of the function type as follows.

instance (Rf a, Rf b) ⇒ Rf (a → b) where
type Sem (a → b) = (Sem a → Sem b,Nf (a → b))
reify = snd
reflect n = (...,NUp n)

Here we write ellipsis (...) for the original implementation of reflection. Reification
projects the second component, a normal form, and reflection is modified to include
an embedding of the neutral n to normal forms.

We proceed with evaluation as follows.

eval (Lam f) = (...,NLam (reify ◦ eval ◦ f))
eval (App f e) = (fst (eval f)) (eval e)

For the case of Lam, we retain our previous implementation for the first component,
and build a normal form in the second component. The evaluation of application is
as before, with a minor modification that projects out the semantic function from
the recursive evaluation of the expression f .

We may also disable 𝜂-expansion for the other types by modifying the interpreta-
tion similarly.

type Sem (a, b) = ((Sem a, Sem b),Nf (a, b))
type Sem (Arr a) = (SArr (Sem a),Nf (Arr a))
...

Glueing provides a compositional solution to disabling 𝜂-expansion for some (or all)
types without changing the implementation for other types. In contrast, another
approach described by Lindley [28], where, for instance, the type a → b is interpreted
by Either (Sem a → Sem b) (Ne (a → b)), requires a more involved reimplementa-
tion of the evaluator. Glueing can also be applied for effect types, but the definition
of normal forms requires more careful consideration to avoid unnecessary expan-
sion. Unlike in a strict language, the implementation of glueing in Haskell avoids a
significant performance cost as the semantic and syntactic parts are only computed
as required, thanks to lazy evaluation.

Practical Normalization by Evaluation for EDSLs

81

Controlling duplication with explicit sharing. Much like other program specializa-
tion techniques, NbE can cause code duplication. For example, consider a function
double that doubles its argument as Lam (𝜆x → Add x x). Normalizing an ap-
plication of double to an irreducible expression large causes it to be duplicated as
Add large large.
Code duplication can be avoided with a Let construct for explicit sharing, for

which NbE can be extended as follows.
data Exp a where ...

Let :: (Rf a, Rf b) ⇒ Exp a → Exp (a → b) → Exp b

data Ne a where ...
NLet :: (Rf a, Rf b) ⇒ Nf a → Nf (a → b) → Ne b

eval (Let e f) = reflect (NLet (reify (eval e)) (reify (eval f)))
Normalizing Let expressions respects sharing, and the expression Let large double
does not reduce, avoiding duplication.

Disabling normalization on subexpressions. An alternative to explicit sharing is to
disable normalization entirely on a subexpression using a construct Save, such that
normalizing Save (App double large) returns the original expression unaffected2. We
achieve this with a Save construct as follows.
data Exp a where ...

Save :: Exp a → Exp a

data Ne a where ...
NSave :: Exp a → Ne a

eval (Save e) = reflect (NSave e)

Optimizing case expressions. The implementation of commuting conversions for
sums in Section 4 can produce normal forms with redundant or repeated case analysis.
Case scr (Lam $ 𝜆 → e) (Lam $ 𝜆 → e)
Case scr (Lam $ 𝜆x → Case scr ...) (Lam $ 𝜆y → Case scr ...)
The use of Case in these expressions is wasteful, and can be optimized further to
reduce the size of the generated normal forms. Specifically, we are interested in the
following two equations (identified by Lindley [29] as constituents of the general
𝜂-rule for sums).
Case scr (Lam $ 𝜆 → e) (Lam $ 𝜆 → e) ≈ e
Case scr (Lam $ 𝜆x → Case scr f1 f2)

(Lam $ 𝜆y → Case scr g1 g2)
≈ Case scr (Lam $ 𝜆x → f1) (Lam $ 𝜆y → g2)

The first equation removes a redundant case analysis on scr , while the second removes
a repeated analysis on scr .
One way to implement these equations is to refine the definition of MDec to pre-

clude problematic decision trees by construction. However, given Haskell’s limited
support for dependent types and the pervasive nature of NbE for sums, this is a
2in an implementation that disables 𝜂 expansion entirely

Modular Normalization with Types

82

somewhat non-trivial modification. An easier (albeit ad hoc) solution is to implement
a post-processing function optimize :: Rf a ⇒ MDec (Nf a) → MDec (Nf a) that
is invoked when reifying decision trees. This is made possible since these transfor-
mations are merely syntactic manipulations of case trees that introduce no further
reductions.

6.2 Applying Arithmetic Equations
To implement richer arithmetic equations (specified in Appendix A.1), our selection of
normal formsmust force the normalizer to perform reductions specified by these equa-
tions, for example, by reducing Add (Lift 1) (Lift 2) to Lift 3, Add (Lift 0) (Var "x")
to Var "x", and so on.

We consider normal forms of integers to be in a sum-of-products form (𝑎𝑘 ∗ 𝑛𝑘) +
(𝑎𝑘−1∗𝑛𝑘−1)+ ...+𝑎0, where 𝑎𝑖 denotes a constant, and𝑛𝑖 denotes a neutral expression,
for each 𝑖 . Correspondingly, we extend the definition of neutrals and normal forms
as follows.

data Ne a where ...
NMul :: Ne Int → Ne Int → Ne Int

data Nf a where ...
NInt :: Int → Nf Int
NAdd :: (Int,Ne Int) → Nf Int → Nf Int

The NMul constructor in neutrals denotes a stuck multiplication, and NAdd denotes
the addition of an integer (𝑎𝑖 ∗ 𝑛𝑖) to the left end of an integer in sum-of-products
form.
We define the semantic domain for integers using a data type SOPInt that is

identical to the shape of normal forms, and use it in our definition of an instance of
Rf .

data SOPInt where
SInt :: Int → SOPInt
SAdd :: (Int,Ne Int) → SOPInt → SOPInt

instance Rf Int where
type Sem Int = SOPInt
reify (SInt a0) = NInt a0
reify (SAdd (ai, ni) k) = NAdd (ai, ni) (reify k)
reflect n = SAdd (1, n) (SInt 0)

The implementation of reify simply converts from the semantic domain to normal
forms, while reflect expands a neutral n :: Exp Int to the form (1 ∗ n) + 0.
Evaluation can be implemented by interpreting Add and Mul by their semantic

counterparts add′ and mul′, which can be defined by induction on values of SOPInt.

add′ :: SOPInt → SOPInt → SOPInt
mul′ :: SOPInt → SOPInt → SOPInt

eval (Add e1 e2) = add′ (eval e1) (eval e2)
eval (Mul e1 e2) = mul′ (eval e1) (eval e2)

Practical Normalization by Evaluation for EDSLs

83

The function add′ adds two integers (𝑎𝑘 ∗𝑛𝑘) + ...+𝑎0 and (𝑏 𝑗 ∗𝑚 𝑗) + ...+𝑏0 in sum-of-
products form by joining them as (𝑎𝑘 ∗𝑛𝑘) + ...+ (𝑏 𝑗 ∗𝑚 𝑗) + ...+ (𝑎0+𝑏0), and function
mul′ multiplies them as (𝑎𝑘 ∗𝑏 𝑗) ∗ (𝑛𝑘 ∗𝑚 𝑗) + (𝑎𝑘 ∗𝑏 𝑗−1) ∗ (𝑛𝑘 ∗𝑚 𝑗−1) + ...+ (𝑎0 ∗𝑏0).

6.3 Adding Uninterpreted Primitives
The core eDSL can be freely extended with uninterpreted primitives using the un-
known constructor Var . For example, to extend our eDSL with a fixed-point construct
without the corresponding equation, we define a combinator fix as:

fix :: Rf a ⇒ Exp ((a → a) → a)
fix = Var "Fix"

Normalizing an application fix f returns the equivalent of the expression of fix
(embNf (norm f)), normalizing the function f , but leaving fix uninterpreted.

7 RELATEDWORK
The NbE technique goes back at least as far as Martin-Löf [31] who used it for proving
normalization in his work on intuitionistic type theory. The core NbE algorithm for
STLC was pioneered by Berger and Schwichtenberg [10]. The name is due to Berger
et al. [9] who used it to speed up the Minlog theorem prover. A closely related
technique is type-directed partial evaluation (TDPE) [18, 20, 21]. TDPE amounts to
an instance of NbE used for partial evaluation in which the NbE semantics is exactly
that of the host language. In contrast, for embedding DSLs we make essential use of
non-standard semantics, e.g. using glueing for suppressing 𝜂-expansion.
Normalization for pure call-by-name STLC with sums is notoriously subtle [23]

because general 𝜂-rule for sums includes additional equations such as those de-
scribed in Section 6. Altenkirch et al. [3] give an NbE algorithm for sums based on a
Grothendieck topology which implicitly captures the kind of decision tree that we
use, but at every type. Balat et al. [7], in contrast, make use of multiprompt delimited
control to allow retrospective exploration of different branches during reification.
Both algorithms build in a degree of syntactic manipulation in order to manage
redundant and repeated case splits similarly to what we describe in Section 6.

NbE for sums becomes considerably easier in an effectful call-by-value setting, as
fewer equations hold. Danvy [18] uses (single prompt) delimited control operators
for handling sums in TDPE. Filinski [22] adapts Danvy’s approach to computational
lambda calculus extended with sums. Lindley [30] adapts Filinksi’s work to replace
delimited control with an accumulation monad which we here call a decision tree
monad and Abel and Sattler [1] characterise as a cover monad. The Danvy/Filinski
approach based on delimited control is at the heart of the treatment of sums in
existing eDSLs [40].
Ahman and Staton [2] give an NbE algorithm for general algebraic effects. We

speculate that our bespoke treatment of specific monadic effects can be related to
their generic approach, but we do not know to what extent their approach maps
conveniently onto the Haskell eDSL setting.

Yallop et al. [43] cast partially-static data as free extensions of algebras, which they
use as the basis for a generic partial evaluation library, frex. The frex approach has

Modular Normalization with Types

84

similarities with NbE, providing in particular a principled foundation for optimising
in the presence of first-order algebraic theories.

Implementations of NbE in Haskell are not new. For instance, Danvy et al. [19] give
an implementation not dissimilar to ours for plain STLC. Prior work on combining
deep and shallow embeddings [40] implicitly uses a restricted form of NbE. Their
Syntactic type class plays a similar role to our Rf type class. However, they do not
make a connection with NbE and they do not use an instance for functions.

We have presented NbE as a unifying framework for eDSLs based on solid theoreti-
cal foundations. A related framework is offered by quoted domain-specific languages
(QDSLs) [33]. QDSLs exploit a similar normalization procedure as part of the em-
bedding process. A key difference is that QDSLs are based on staging and a separate
normalization algorithm.
The idea of viewing eDSLs through the lens of NbE was explored in an earlier

draft paper [32] using Agda rather than Haskell.

8 FINAL REMARKS
We have presented, to the best of our knowledge, the first comprehensive practical
implementation of NbE for Haskell eDSLs. NbE provides a systematic and modular
approach to specialize eDSL programs in Haskell, and provides a principled account
of ad hoc techniques previously developed using a combination of deep and shallow
embedding. We have shown how problems that arise from a traditional approach to
NbE can be addressed to suit practical concerns such as code expansion, normalization
with domain-specific equations, and extension with uninterpreted primitives.

We have not proved the correctness of our NbE implementation, which is typically
achieved by showing that an expression is equivalent to its normal form in the chosen
equational theory. Moreover, the account of interactions between effects and sums
is quite intricate, and appears to be somewhat ad hoc in this level of presentation.
A formal investigation of the semantic monads and their interaction is required to
identify a more modular solution to add effects to an eDSL that enjoys the benefits
of NbE. We leave both these formal aspects as avenues for future work.
We believe that NbE has a broader applicability beyond the examples of fusion

shown here. For example, NbE could be used in the security domain, to automatically
remove superfluous security checks performed at runtime by programs written in
a security eDSL (e.g., [39]). Similarly, in databases (e.g., [37]), NbE could be used
normalize queries written in a higher-order eDSL to achieve elimination of higher-
order functions and other intermediate data-structures [15, 25].

ACKNOWLEDGMENTS
This work was funded by the Swedish Foundation for Strategic Research (SSF) under
the project Octopi (Ref. RIT17-0023), the Swedish research agency Vetenskapsrådet,
and UKRI Future Leaders Fellowship MR/T043830/1 (EHOP).

Practical Normalization by Evaluation for EDSLs

85

A APPENDIX
A.1 Equational Theory

Commmuting conversions.

F (Case e g h) ≈ Case e (F ◦ g) (F ◦ h)
This equation specifies commuting conversions that enable us to push eliminators

under a case expression, for example, as:
App f (Case e g h) ≈ Case e (App f ◦ g) (App f ◦ h)
The symbol F in the equation is a unary function on expressions that denotes an
elimination context such as App f :: Exp a → Exp b (for some f :: Exp (a → b)),
Fst :: Exp (a, b) → Exp a, or Add e :: Exp Int → Exp Int, etc.

Arithmetic equations.

(Lift x) + (Lift y) ≈ Lift (x + y)
(Lift 0) + e ≈ e
(Lift x) + (e1 + e2) ≈ e1 + (Lift x + e2)
(e1 + e2) + e3 ≈ e1 + (e2 + e3)
(Lift x) ∗ (Lift y) ≈ Lift (x ∗ y)
(Lift 0) ∗ e ≈ Lift 0
(Lift 1) ∗ e ≈ e
(Lift x) ∗ (e1 + e2) ≈ (Lift x ∗ e1) + (Lift x ∗ e2)
(e1 + e2) ∗ e3 ≈ (e1 ∗ e3) + (e2 ∗ e3)

A.2 Normalizing Primitive Recursion
The recursion construct Rec can be used to perform primitive recursion. Asmentioned
earlier for its combinator counterpart rec, an expression Rec n f x is the equivalent
of applying f repetitively as f 1 (f 2 (...(f n x))). This behaviour can be specified
by the following equations.
Rec i f x ≈ x -- (i <= 0)
Rec (e1 + e2) f x ≈ Rec e1 f (Rec e2 f x)
To extend our NbE implementation with recursion, we extend the definition of

neutrals with a new constructor for stuck recursion as follows.
data Ne a where ...

NRec :: Rf a ⇒ (Int,Ne Int)
→ (Exp Int → Exp a → Nf a) → Nf a → Ne a

We then evaluate recursion using a semantic function rec′.
rec′ :: Rf a ⇒ SOPInt

→ (Sem Int → Sem a → Sem a) → Sem a → Sem a
rec′ (SInt i) f x

| i ⩽ 0 = x
| otherwise = rec′ (SInt (i − 1)) f (f (SInt i) x)

rec′ (SAdd aini k) f x
= reflect (NRec aini f ′ (reify (rec′ k f x)))

Modular Normalization with Types

86

where
f ′ i b = reify (f (eval i) (eval b))

eval (Rec n f x) = rec′ (eval n) (eval f) (eval x)
When the value of an integer is available, rec′ performs the expected recursion, and
otherwise simply applies the second equation of recursion.

A.3 Semantic Monads

instance Monad MDec where
return x = Leaf x
(Leaf x) >>= f = f x
(Branch n g h) >>= f = Branch n ((=<<) f ◦ g) ((=<<) f ◦ h)

instance Monad MErr where
return x = SReturnerr x
(SReturnerr x) >>= f = f x
(SThrow x) >>= f = SThrow x
(STryUnless n g h) >>= f = STryUnless n
((=<<) f ◦ g) ((=<<) f ◦ h)

(SCaseErr n g h) >>= f = SCaseErr n
((=<<) f ◦ g) ((=<<) f ◦ h)

catch′ ::MErr sa → (Sem String → MErr sa) → MErr sa
catch′ (SReturnerr x) f = SReturnerr x
catch′ (SThrow x) f = f x
catch′ (STryUnless n g h) f = STryUnless n

(flip catch′ f ◦ g) (flip catch′ f ◦ h)
catch′ (SCaseErr n g h) f = SCaseErr n

(flip catch′ f ◦ g) (flip catch′ f ◦ h)

-- mutually recursive Functor instances
instance Functor (MStres s) where
fmap f (SReturnst x) = SReturnst (f x)
fmap f (SBindst n g) = SBindst n (fmap f ◦ g)

instance Functor (MSt s) where
fmap f m = SGetPut $ fmap (fmap (fmap f)) ◦ runMState m

joinMSt ::MSt s (MSt s a) → MSt s a
joinMSt m = SGetPut $ (=<<) magic ◦ runMState m
where
magic :: (Sem s,MStres s (MSt s a)) → MDec (Sem s,MStres s a)
magic (s, SReturnst m) = runMState m s
magic (s, SBindst n g) = Leaf (s, SBindst n (joinMSt ◦ g))

instance Monad (MSt s) where
return x = SGetPut $ 𝜆s → Leaf (s, SReturnst x)
m >>= f = joinMSt (fmap f m)

Practical Normalization by Evaluation for EDSLs

87

REFERENCES
[1] Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for Call-By-Push-Value and

Polarized Lambda Calculus. In Proceedings of the 21st International Symposium on Principles and
Practice of Declarative Programming. 1–12.

[2] Danel Ahman and Sam Staton. 2013. Normalization by Evaluation and Algebraic Effects. In MFPS
(Electronic Notes in Theoretical Computer Science, Vol. 298). Elsevier, 51–69.

[3] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. 2001. Normalization by
Evaluation for Typed Lambda Calculus with Coproducts. In LICS. IEEE Computer Society, 303–310.

[4] Markus Aronsson, Emil Axelsson, and Mary Sheeran. 2014. Stream processing for embedded domain
specific languages. In Proceedings of the 26nd 2014 International Symposium on Implementation and
Application of Functional Languages. 1–12.

[5] Robert Atkey, Sam Lindley, and Jeremy Yallop. 2009. Unembedding domain-specific languages. In
Haskell. ACM, 37–48.

[6] Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Engdal, and Anders Persson.
2010. The Design and Implementation of Feldspar - An Embedded Language for Digital Signal
Processing. In IFL (Lecture Notes in Computer Science, Vol. 6647). Springer, 121–136.

[7] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. 2004. Extensional normalisation and
type-directed partial evaluation for typed lambda calculus with sums. In POPL. ACM, 64–76.

[8] Nick Benton and Andrew Kennedy. 2001. Exceptional syntax. Journal of Functional Programming 11,
4 (2001), 395–410.

[9] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalisation by Evaluation. In
Prospects for Hardware Foundations (Lecture Notes in Computer Science, Vol. 1546). Springer, 117–137.

[10] Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse of the Evaluation Functional for Typed
lambda-calculus. In LICS. IEEE Computer Society, 203–211.

[11] Ilya Beylin and Peter Dybjer. 1995. Extracting a Proof of Coherence for Monoidal Categories from a
Proof of Normalization for Monoids. In TYPES (Lecture Notes in Computer Science, Vol. 1158). Springer,
47–61.

[12] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hardware Design in
Haskell. In ICFP. ACM, 174–184.

[13] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct. Program. 19, 5 (2009), 509–543.

[14] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011.
Accelerating Haskell array codes with multicore GPUs. In DAMP. ACM, 3–14.

[15] James Cheney, Sam Lindley, and Philip Wadler. 2013. A practical theory of language-integrated
query. In ICFP. ACM, 403–416.

[16] Catarina Coquand. 1993. From Semantics to Rules: A Machine Assisted Analysis. In Computer
Science Logic, 7th Workshop, CSL ’93, Swansea, United Kingdom, September 13-17, 1993, Selected Papers
(Lecture Notes in Computer Science, Vol. 832), Egon Börger, Yuri Gurevich, and Karl Meinke (Eds.).
Springer, 91–105. https://doi.org/10.1007/BFb0049326

[17] Thierry Coquand and Peter Dybjer. 1997. Intuitionistic Model Constructions and Normalization
Proofs. Math. Struct. Comput. Sci. 7, 1 (1997), 75–94.

[18] Olivier Danvy. 1998. Type-Directed Partial Evaluation. In Partial Evaluation (Lecture Notes in
Computer Science, Vol. 1706). Springer, 367–411.

[19] Olivier Danvy, Morten Rhiger, and Kristoffer Høgsbro Rose. 2001. Normalization by evaluation with
typed abstract syntax. J. Funct. Program. 11, 6 (2001), 673–680.

[20] Peter Dybjer and Andrzej Filinski. 2000. Normalization and Partial Evaluation. In APPSEM (Lecture
Notes in Computer Science, Vol. 2395). Springer, 137–192.

[21] Andrzej Filinski. 1999. A Semantic Account of Type-Directed Partial Evaluation. In PPDP (Lecture
Notes in Computer Science, Vol. 1702). Springer, 378–395.

[22] Andrzej Filinski. 2001. Normalization by Evaluation for the Computational Lambda-Calculus. In
TLCA (Lecture Notes in Computer Science, Vol. 2044). Springer, 151–165.

[23] Neil Ghani. 1995. 𝛽𝜂-Equality for Coproducts. In TLCA (Lecture Notes in Computer Science, Vol. 902).
Springer, 171–185.

Modular Normalization with Types

88

[24] Andy Gill. 2014. Domain-specific languages and code synthesis using Haskell. Commun. ACM 57, 6
(2014), 42–49.

[25] George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen Weijers. 2010. Haskell Boards the Ferry
- Database-Supported Program Execution for Haskell. In IFL (Lecture Notes in Computer Science,
Vol. 6647). Springer, 1–18.

[26] Paul Hudak. 1996. Building Domain-Specific Embedded Languages. ACM Comput. Surv. 28, 4es
(1996), 196.

[27] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Inc., USA.

[28] Sam Lindley. 2005. Normalisation by Evaluation in the Compilation of Typed Functional Programming
Languages. Ph.D. Dissertation. University of Edinburgh.

[29] Sam Lindley. 2007. Extensional Rewriting with Sums. In TLCA (Lecture Notes in Computer Science,
Vol. 4583). Springer, 255–271.

[30] Sam Lindley. 2009. Accumulating bindings. In NBE 2009. 49–56.
[31] Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73.

Vol. 80. Elsevier, 73–118.
[32] Shayan Najd, Sam Lindley, Josef Svenningsson, and PhilipWadler. 2016. Embedding by Normalisation.

CoRR abs/1603.05197 (2016).
[33] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Everything old is new again:

quoted domain-specific languages. In PEPM. ACM, 25–36.
[34] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In PLDI. ACM, 199–208.
[35] Dag Prawitz. 1971. Ideas and results in proof theory. In Proceedings of the 2nd Scandinavian Logic

Symposium (Studies in Logics and the Foundations of Mathmatics, 63). North Holland, 235–307.
[36] Morten Rhiger. 2003. A foundation for embedded languages. ACM Trans. Program. Lang. Syst. 25, 3

(2003), 291–315.
[37] Tiark Rompf and Nada Amin. 2015. Functional pearl: a SQL to C compiler in 500 lines of code. In

Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming. 2–9.
[38] Alejandro Russo, Koen Claessen, and John Hughes. 2008. A library for light-weight information-flow

security in Haskell. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008.
13–24.

[39] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011. Flexible dynamic
information flow control in Haskell. In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell,.
95–106.

[40] Josef Svenningsson and Emil Axelsson. 2015. Combining deep and shallow embedding of domain-
specific languages. Comput. Lang. Syst. Struct. 44 (2015), 143–165.

[41] Bo Joel Svensson, Mary Sheeran, and Ryan R. Newton. 2014. Design exploration through code-
generating DSLs. Commun. ACM 57, 6 (2014), 56–63.

[42] Nachiappan Valliappan, Robert Krook, Alejandro Russo, and Koen Claessen. 2020. Towards secure
IoT programming in Haskell. In Haskell@ICFP. ACM, 136–150.

[43] Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-static data as free extension of
algebras. Proc. ACM Program. Lang. 2, ICFP (2018), 100:1–100:30.

Practical Normalization by Evaluation for EDSLs

89

C
Simple Noninterference by Normalization

Abstract. Information-flow control (IFC) languages ensure programs preserve
the confidentiality of sensitive data. Noninterference, the desired security prop-
erty of such languages, states that public outputs of programs must not depend
on sensitive inputs. In this paper, we show that noninterference can be proved
using normalization. Unlike arbitrary terms, normal forms of programs are
well-principled and obey useful syntactic properties—hence enabling a simpler
proof of noninterference. Since our proof is syntax-directed, it offers an appeal-
ing alternative to traditional semantic based techniques to prove noninterfer-
ence.
In particular, we prove noninterference for a static IFC calculus, based on
Haskell’s seclib library, using normalization. Our proof follows by straightfor-
ward induction on the structure of normal forms. We implement normalization
using normalization by evaluation and prove that the generated normal forms
preserve semantics. Our results have been verified in the Agda proof assistant.

91

1 INTRODUCTION
Information-flow control (IFC) is a security mechanism which guarantees confi-
dentiality of sensitive data by controlling how information is allowed to flow in a
program. The guarantee that programs secured by an IFC system do not leak sensitive
data is often proved using a property called noninterference. Noninterference ensures
that an observer authorized to view the output of a program (pessimistically called
the attacker) cannot infer any sensitive data handled by it. For example, suppose
that the type IntH denotes a secret integer and BoolL denotes a public boolean. Now
consider a program f with the following type:

f : IntH → BoolL

For this program, noninterference ensures that f outputs the same boolean for
any given integer.
To prove noninterference, we must show that the public output of a program

is not affected by varying the secret input. This has been achieved using many
techniques including term erasure based on dynamic operational semantics [14, 23,
24, 29], denotational semantics [1, 13], and parametricity [27, 7, 3]. In this paper, we
show that noninterference can also be proved by normalizing programs using the
static or residualising semantics [15] of the language.

If a program returns the same output for any given input, it must be the case that
it does not depend on the input to compute the output. Thus proving noninterference
for a program which receives a secret input and produces a public output, amounts
to showing that the program behaves like a constant program. For example, proving
noninterference for the program f consists of showing that it is equivalent to either
𝜆 x . true or 𝜆 x . false; it is immediately apparent that these functions do not depend
on the secret input x. But how can we prove this for any arbitrary definition of f ?
The program f may have been defined as the simple function 𝜆 x . (𝑛𝑜𝑡 false) or

perhaps the more complex function 𝜆 x . ((𝜆 y .𝑠𝑛𝑑 (x , y)) true). Observe, however,
that both these programs can be normalized to the equivalent function 𝜆 x . true. In
general, although terms in the language may be arbitrarily complex, their normal
forms (such as 𝜆 x . true) are not. They are simpler, thus well-suited for showing
noninterference.
The key idea in this paper is to normalize terms, and prove noninterference

by simple structural induction on their normal forms. To illustrate this, we prove
noninterference for a static IFC calculus, which we shall call 𝜆sec, based on Haskell’s
seclib library by Russo, Claessen, and HughesWe present the typing rules and static
semantics for 𝜆sec by extending Moggi’s computational metalanguage [19] (Section 2).
We identify normal forms of 𝜆sec, and establish syntactic properties about a normal
form’s dependency on its input (Section 3). Using these properties, we show that the
normal forms of program f are 𝜆 x . true or 𝜆 x . false—as expected (Section 4).

To prove noninterference for all terms using normal forms, we implement normal-
ization for 𝜆sec using normalization by evaluation (NbE) [6] and prove that it preserves
the static semantics (Section 5). Using normalization, we prove noninterference for
program f and further generalize this proof to all terms in 𝜆sec (Section 6) —including,
for example, a program which operates on both secret and public values such as

Simple Noninterference by Normalization

93

BoolL × BoolH → BoolL × BoolH. Finally, we conclude by discussing related
work and future directions (Section 7).

Unlike earlier proofs, our proof shows that noninterference is an inherent property
of the normal forms of 𝜆sec. Since the proof is primarily type and syntax-directed, it
provides an appealing alternative to typical semantics based proof techniques. All
the main theorems in this paper have been mechanized in the proof assistant Agda1.

2 THE 𝜆sec CALCULUS
In this section we present 𝜆sec, a static IFC calculus that we shall use as the basis for
our proof of noninterference. It models the pure and terminating fragment of the IFC
library seclib2 for Haskell, and is an extension of the calculus developed by Russo,
Claessen, and Hughes [23] with sum types. seclib is a lightweight implementation
of static IFC which allows programmers to incorporate untrusted third-party code
into their applications while ensuring that it does not leak sensitive data. Below, we
recall the public interface (API) of seclib:

data 𝑆 (ℓ :: 𝐿𝑎𝑡𝑡𝑖𝑐𝑒) a
𝑟𝑒𝑡𝑢𝑟𝑛 :: a → 𝑆 ℓ a
(≫=) :: 𝑆 ℓ a → (a → 𝑆 ℓ b) → 𝑆 ℓ b
𝑢𝑝 :: ℓL ⊑ ℓH ⇒ 𝑆 ℓL a → 𝑆 ℓH a

Similar to other IFC libraries in Haskell such as LIO [24] or MAC [30], seclib’s
security guarantees rely on exposing the API to the programmer while hiding the
underlying implementation. Programs written against the API and the safe parts of
the language [25] are guaranteed to be secure-by-construction; the library enforces
security statically through types. As an example, suppose that we have the two-point
security lattice [11, see] {L,H} where the only disallowed flow is from secret (H) to
public (L), denoted H @ L. The following program written using the seclib API is
well-typed and—intuitively—secure:

example :: 𝑆 L Bool → 𝑆 H Bool
example p = 𝑢𝑝 (p ≫= 𝜆 b → 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑛𝑜𝑡 b))
The function example negates the Bool that it receives as input and upgrades its

security level from public to secret. On the other hand, had the program tried to
downgrade the secret input to public—clearly violating the policy of the security
lattice—the typechecker would have rejected the program as ill-typed.

The Calculus. 𝜆sec is a simply typed 𝜆-calculus (STLC) with a base (uninterpreted)
type, unit type, product and sum types, and a security monad type for every security
level in a set of labels (denoted by Label). The set of labels may be a lattice, but our
development only requires it to be a preorder on the relation ⊑. Throughout the
rest of this paper, we use the labels ℓL and ℓH and refer to them as public and secret,
although they represent levels in an arbitrary security lattice such that ℓH @ ℓL.
Figure 1 defines the syntax of terms, types and contexts of 𝜆sec.

1https://github.com/carlostome/ni-nbe
2https://hackage.haskell.org/package/seclib

Modular Normalization with Types

94

Label ℓ , ℓH , ℓL

Context Γ Δ Σ ::= ∅ | Γ , x : 𝜏

Type 𝜏 𝜏1 𝜏2 ::= 𝜏1 ⇒ 𝜏2 | 𝜄 | ()
| 𝜏1 + 𝜏2 | 𝜏1 × 𝜏2
| S ℓ 𝜏

Term t s u ::= x | 𝜆 x . t | t s | ()
| < t , s > | fst t | snd t
| left t | right t
| case t (left 𝑥1 → s) (right 𝑥2 → u)
| return t | let x = t in u | up t

Fig. 1. The 𝜆sec calculus

In addition to the standard introduction and elimination constructs for unit, prod-
ucts and sums in STLC, 𝜆sec uses the constructs return, let and up for the security
monad S ℓ 𝜏 , which mirrors 𝑆 from seclib. Note that our presentation favours
let, as in Moggi [18], over the Haskell bind (≫=), although both presentations are
equivalent—i.e. t ≫= 𝜆 x .u can be encoded as let x = t in u.
The typing rules for return and let, shown in Figure 2, ensure that computations

over labeled values in the security monad S ℓ 𝜏 do not leak sensitive data. The
construct return allows the programmer to tag a value of type 𝜏 with security label
ℓ ; and bind enforces that sequences of computations over labeled values stay at the
same security level.

Γ ⊢ t : 𝜏
Return

Γ ⊢ t : 𝜏

Γ ⊢ return t : S ℓ 𝜏

Up
Γ ⊢ t : S ℓL 𝜏 ℓL ⊑ ℓH

Γ ⊢ up t : S ℓH 𝜏

Let
Γ ⊢ t : S ℓ 𝜏1 Γ , x : 𝜏1 ⊢ s : S ℓ 𝜏2

Γ ⊢ let x = t in s : S ℓ 𝜏2

Fig. 2. Type system of 𝜆sec (excerpts)

Further, the calculus models the 𝑢𝑝 combinator in seclib as the construct up. Its
purpose is to relabel computations to higher security levels. The rule Up, shown in
Figure 2, statically enforces that information can only flow from ℓL to ℓH in agreement
with the security policy ℓL ⊑ ℓH. The rest of the typing rules for 𝜆sec are standard [21],
and thus omitted here. For a full account we refer the reader to our Agda formalization.
For completeness, the function example from earlier can be encoded in the 𝜆sec

calculus as follows:3

3In 𝜆sec, the type Bool is encoded as () + () with false = left () and true = right ().

Simple Noninterference by Normalization

95

example = 𝜆 s .up (let b = s in return (𝑛𝑜𝑡 b))

Static Semantics. The static semantics of 𝜆sec is defined as a set of equations relating
terms of the same type typed under the same environment. The equations characterize
pairs of 𝜆sec terms that are equivalent based on 𝛽-reduction, 𝜂-expansion and other
monadic operations.

We present the equations for return and let constructs of the monadic type S (à la
Moggi [19]) in Figure 3, and further extend this with equations for the up primitive
in Figure 4.

The remaining equations—including 𝛽 and 𝜂 rules for other types, and permutation
rules for commuting case conversions—are fairly standard [15, 2], and can be found
in the Agda formalization.

As customary, we use the notation 𝑡1 [x/t_2] for capture-avoiding substitution of
the term 𝑡2 for variable x in term 𝑡1.

Γ ⊢ 𝑡1 ≈ 𝑡2 : 𝜏

𝛽-S
Γ ⊢ 𝑡1 : 𝜏 Γ , x : 𝜏 ⊢ 𝑡2 : S ℓ 𝜏

Γ ⊢ let x = (return 𝑡1) in 𝑡2 ≈ 𝑡2 [x/t_1] : S ℓ 𝜏

𝜂-S
Γ ⊢ t : S ℓ 𝜏

Γ ⊢ t ≈ let x = t in (return x) : S ℓ 𝜏

𝛾-S
Γ ⊢ 𝑡1 : S ℓ 𝜏1 Γ , x : 𝜏1 ⊢ 𝑡2 : S ℓ 𝜏2 Γ , x : 𝜏1 , y : 𝜏2 ⊢ t_3 : S ℓ 𝜏3

Γ ⊢ let x = (let y = 𝑡1 in 𝑡2) in t_3 ≈
let y = 𝑡1 in (let x = 𝑡2 in t_3) : S ℓ 𝜏3

Fig. 3. Static semantics of 𝜆sec (return and let)

The up primitive induces equations regarding its interaction with itself and other
constructs in the security monad. In Figure 4, we make the auxiliary condition of up
and the label of return explicit using subscripts for better clarity. These equations
can be understood as follows:

• Rule 𝛿1-S. applying up over let is equivalent to distributing it over the sub-
terms of let.

• Rule𝛿2-S. applying up on an term labeled as return t is equivalent to relabeling
t with the final label.

• Rule 𝛿trans-S. applying up twice is equivalent to applying it once using the
transitivity of the relation ⊑.

• Rule 𝛿refl-S. applying up using the reflexive relation ℓ ⊑ ℓ is equivalent to
not applying it.

Modular Normalization with Types

96

Γ ⊢ 𝑡1 ≈ 𝑡2 : 𝜏

𝛿1-S
Γ ⊢ t : S ℓL 𝜏1 Γ , x : 𝜏1 ⊢ u : S ℓL 𝜏2 𝑝 : ℓL ⊑ ℓH

Γ ⊢ up𝑝 (let x = t in u) ≈ let x = (up𝑝 t) in (up𝑝 u) : S ℓH 𝜏

𝛿2-S
Γ ⊢ t : 𝜏 𝑝 : ℓL ⊑ ℓH

Γ ⊢ up𝑝 (returnℓL t) ≈ returnℓH t : S ℓH 𝜏

𝛿trans-S
Γ ⊢ t : S ℓL 𝜏 p : ℓL ⊑ ℓM q : ℓM ⊑ ℓH r = trans-⊑ p q

Γ ⊢ up𝑞 (up𝑝 t) ≈ up𝑟 t : S ℓH 𝜏

𝛿refl-S
Γ ⊢ t : S ℓ 𝜏 p : ℓ ⊑ ℓ

Γ ⊢ up𝑝 t ≈ t : S ℓ 𝜏

Fig. 4. Static semantics of 𝜆sec (up)

3 NORMAL FORMS OF 𝜆sec

As discussed in Section 1, our proof of noninterference utilizes syntactic properties of
normal forms, and hence relies on normalizing terms in the language. Normal forms
are a restricted subset of terms in the 𝜆sec calculus which intuitively corresponds to
terms that cannot be normalized further. The syntax of normal forms is defined using
two well-typed interdependent syntactic categories: neutral forms as Γ ⊢ne t : 𝜏
(Figure 5) and normal forms as Γ ⊢nf t : 𝜏 (Figure 6). Neutral forms are a special case
of normal forms which depend entirely on the typing context (e.g., a variable).

Since the definition of neutral and normal forms are merely a syntactic restriction
over terms, they can be embedded back into terms of 𝜆sec using a quotation function
⌜ n ⌝. This embedding can be implemented for neutrals and normal forms by simply
mapping them to their term-counterparts.

Γ ⊢ne t : 𝜏

Var
x : 𝜏 ∈ Γ

Γ ⊢ne x : 𝜏

App
Γ ⊢ne t : 𝜏1 ⇒ 𝜏2 Γ ⊢nf s : 𝜏1

Γ ⊢ne t s : 𝜏2

Fst
Γ ⊢ne t : 𝜏1 × 𝜏2

Γ ⊢ne fst t : 𝜏1

Snd
Γ ⊢ne t : 𝜏1 × 𝜏2

Γ ⊢ne snd t : 𝜏2

Fig. 5. Neutral forms

Simple Noninterference by Normalization

97

Γ ⊢nf t : 𝜏

Unit

Γ ⊢nf () : ()

Lam
Γ , x : 𝜏1 ⊢nf t : 𝜏2

Γ ⊢nf 𝜆 x . t : 𝜏1 ⇒ 𝜏2

Base
Γ ⊢ne t : 𝜄

Γ ⊢nf t : 𝜄

Ret
Γ ⊢nf t : 𝜏

Γ ⊢nf return t : S ℓ 𝜏

LetUp
ℓL ⊑ ℓH Γ ⊢ne t : S ℓL 𝜏1 Γ , x : 𝜏1 ⊢nf s : S ℓH 𝜏2

Γ ⊢nf let↑ x = t in s : S ℓH 𝜏2

Left
Γ ⊢nf t : 𝜏1

Γ ⊢nf left t : 𝜏1 + 𝜏2

Right
Γ ⊢nf t : 𝜏2

Γ ⊢nf right t : 𝜏1 + 𝜏2

Case
Γ ⊢ne t : 𝜏1 + 𝜏2 Γ , 𝑥1 : 𝜏1 ⊢nf 𝑡1 : 𝜏 Γ , 𝑥2 : 𝜏2 ⊢nf 𝑡2 : 𝜏

Γ ⊢nf case t (left 𝑥1 → 𝑡1) (right 𝑥2 → 𝑡2) : 𝜏

Fig. 6. Normal forms

Neutral Forms. The neutral forms are terms which are characterized by a property
called neutrality, which is stated as follows:

Property 3.1 (Neutrality). For a given neutral form of type Γ ⊢ne 𝜏 , neutrality states
that the type 𝜏 must occur as a subformula of a type in the context Γ.

For instance, given a neutral form Γ ⊢ne n : Bool, neutrality states that the type
Bool must occur as a subformula of some type in the typing context Γ. An example
of such a context is Γ = [x : () ⇒ Bool , y : S ℓH 𝜄]. The notion of a subformula,
originally defined for logical propositional formulas in proof theory [26], can also be
defined for types as follows:

Definition 3.1 (Subformula). For some types 𝜏 , 𝜏1 and 𝜏2; a subformula of a type is
defined as:

• 𝜏 is a subformula of 𝜏
• 𝜏 is a subformula of 𝜏1 ⊗ 𝜏2 if 𝜏 is a subformula of 𝜏1 or 𝜏 is a subformula of
𝜏2, where ⊗ denotes the binary type operators × , + and⇒.

The type Bool occurs as a subformula in the typing context [() ⇒ Bool , S ℓH 𝜄]
since the type Bool is a subformula of the type () ⇒ Bool. Note, however, that the
type 𝜄 does not occur as a subformula in this context since 𝜄 is not a subformula of
the type S ℓH 𝜄 by the above definition.

Normal Forms. Intuitively, normal forms of type Γ ⊢nf 𝜏 are characterized as terms
of type Γ ⊢ 𝜏 that cannot be reduced further using the static semantics. Precisely,
a normal form is a term obtained by systematically applying the equations defined
by the relation ≈ in a specific order to a given term. We leave the exact order of
applying the equations unspecified since we only require that there exists a normal

Modular Normalization with Types

98

form for every term—we prove this later in Section 5. The normal forms in Figure 6
extend the 𝛽-short 𝜂-long forms in STLC [5, 2] with return and let↑. Note that, unlike
neutrals, arbitrary normal forms do not obey neutrality since they may also construct
values which do not occur in the context. For example, the normal form left () (which
denotes the value false) of type ∅ ⊢nf Bool constructs a value of the type Bool in the
empty context ∅.
The reader may have noticed that the let↑ construct in normal forms does not

directly resemble a term, and hence it is not immediately obvious how it should be
quoted. Normal forms constructed by let↑ can be quoted by first applying up to the
quotation of the neutral and then using let. The reason let↑ represents both let and up
in the normal forms is to retain the non-reducibility of normal forms. Had we added
up separately to normal forms, then this may trigger further reductions. For example,
the term up (return ()) can be reduced further to the term return (). Disallowing
up-terms directly in normal forms removes the possibility of this reduction in normal
forms. Similarly, adding up to neutral forms is also equally worse since it breaks
neutrality.

The syntactic characterization of neutral and normal forms provides us with useful
properties in the proof of noninterference. For example, there cannot exist a neutral
of type ∅ ⊢ne 𝜏 for any type 𝜏 . By neutrality, if such a neutral form exists, then 𝜏
must be a subformula of the empty context ∅, but this is impossible! Similarly, the
𝜂-long form of normal forms guarantee that a normal form of a function type must
begin with either a 𝜆 or case—hence reducing the number of possible cases in our
proof. In the next section, we utilize these properties to show that the program f
(from earlier) behaves as a constant.

4 NORMAL FORMS AND NONINTERFERENCE
The program f : IntH → BoolL from Section 1 can be generalized in 𝜆sec as a term4

∅ ⊢ f : S ℓH 𝜏 ⇒ S ℓL Bool marking the secret input and public output through the
security monad. Noninterference for this term—which Russo, Claessen, and Hughes
[23] refer to as a “noninterference-like” property for 𝜆sec—states that given two levels
ℓL (public) and ℓH (secret) such that the flow of information from secret to public is
disallowed as ℓH @ ℓL; for any two possibly different secrets s_1 and s_2, applying f
to s_1 is equivalent to applying it to s_2. In other words, it states that varying the
secret input must not interfere with the public output.
As explained before, for ∅ ⊢ f : S ℓH 𝜏 ⇒ S ℓL Bool to satisfy noninterference, it

must be equivalent to the constant function whose body is return true or return false
independent of the input. For an arbitrary program f it is not possible to conclude so
just from case analysis—as programs may be fairly complex—however, for normal
forms of the same type it is possible. In the lemma below, we materialize this intuition:
Lemma 4.1 (Normal forms of f are constant). For any normal form ∅ ⊢nf f : S ℓH 𝜏
⇒ S ℓL Bool, either f ≡ 𝜆 x . (return true) or f ≡ 𝜆 x . (return false)
Note that the equality relation ≡ denotes syntactic (or propositional) equality, which
means that the normal forms on both sides must be syntactically identical. The proof
4𝜆sec does not have polymorphic types, in this case 𝜏 represents an arbitrary but concrete type, for instance
unit ().

Simple Noninterference by Normalization

99

follows by direct case analysis on the normal forms of type ∅ ⊢nf f : S ℓH 𝜏 ⇒
S ℓL Bool:

Proof of Lemma 4.1. Upon closer inspection of the normal forms of 𝜆sec (Figure 6),
the reader may notice that for the function type ∅ ⊢nf S ℓH 𝜏 ⇒ S ℓL Bool there exists
only two possibilities: a case or a 𝜆 construct. The former, can be easily dismissed by
neutrality because it requires the scrutinee—a neutral form of sum type 𝜏1 + 𝜏2—to
appear in the empty context. In the latter case, the 𝜆 construct extends typing context
of the body with the type of the argument, and thus refines the normal form to have
the shape 𝜆 x . where ∅ , x : S ℓH 𝜏 ⊢nf : S ℓL Bool.
Considering the normal forms of type ∅ , x : S ℓH 𝜏 ⊢nf S ℓL Bool, we realize

that there are only three possible candidates: the case construct again, the monadic
return or let. As before, case is discharged because it requires the scrutinee of sum
type to occur in the context ∅ , x : S ℓH 𝜏 . Analogously, the monadic let with a
neutral term of type S ℓL 𝜏 , expects this type to occur in the same context—but it
does not, since S ℓL 𝜏 is not a subformula of S ℓH 𝜏 . The remaining case, return, can
be further refined, where the only possibilities leave us with 𝜆 x . (return true) or
𝜆 x . (return false). □

In order to show that noninterference holds for arbitrary programs of type ∅ ⊢
f : S ℓH 𝜏 ⇒ S ℓL Bool using this lemma, we must link the behaviour of a pro-
gram with that of its normal form. In the next section we develop the necessary
normalization machinery and later complete the proof of noninterference in Section 6.

5 FROM 𝜆sec TO NORMAL FORMS
The goal of this section is to implement a normalization algorithm that bridges the gap
between terms and their normal forms. For this purpose, we employ Normalization
by Evaluation (NbE).
Normalization based on rewriting techniques [21] perform syntactic transforma-

tions of a term to produce a normal form. NbE, on the other hand, normalizes a
term by evaluating it in a host language, and then extracting a normal form from
the (semantic) value in the host language. Evaluation of a term is implemented by
an interpreter function eval, and the extraction of normal forms, called reification,
is implemented by an inverse function reify. Normalization is implemented as a
function from terms to normal forms by composing these functions:

norm : (Γ ⊢ 𝜏) → (Γ ⊢nf 𝜏)
norm t = reify (eval t)
The function eval and reify have the following types in the host language:
eval : (Γ ⊢ 𝜏) → (J Γ K → J 𝜏 K)
reify : (J Γ K → J 𝜏 K) → (Γ ⊢nf 𝜏)

In these types, the function J K interprets types and contexts in 𝜆sec as types in
the host language. That is, the type J 𝜏 K denotes the interpretation of the (𝜆sec)
type 𝜏 in the host language, and similarly for J Γ K. On the other hand, the function
J Γ K → J 𝜏 K—a function between the interpretations in the host language—denotes
the interpretation of the term Γ ⊢ 𝜏 .

Modular Normalization with Types

100

The advantages of using NbE over a rewrite system are two-fold: first, it serves as an
actual implementation of the normalization algorithm; second, and most importantly,
when implemented in a proof system like Agda, it makes normalization amenable to
formal reasoning. For example, since Agda ensures that all functions are total, we are
assured that a normal form must exist for every term in 𝜆sec. Similarly, we also get a
proof that normalization terminates for free since Agda ensures that all functions
are terminating.
We implement the functions eval and reify for terms in 𝜆sec using Agda as the

host language. Note that, however, the implementation of our algorithm—and NbE in
general—is not specific to Agda. It may also be implemented in other programming
languages such as Haskell [10] or Standard ML [5].

In the remainder of this section, we will denote the typing derivations Γ ⊢nf 𝜏 and
Γ ⊢ne 𝜏 as Nf 𝜏 and Ne 𝜏 respectively. We leave the context Γ implicit to avoid the
clutter caused by contexts and their weakenings [4, 16]. Similarly, we will represent
variables of type 𝜏 ∈ Γ as Var 𝜏 , leaving Γ implicit. Although we use de Bruijn indices
in the actual implementation of variables, we will continue to use named variables
here to ease presentation. We encourage the curious reader to see the formalization
in Agda for further details.

5.1 NbE for Simple Types
To begin with, we implement evaluation and reification for the types 𝜄, (), × and⇒.
The implementation for sums is more technical, and hence deferred to Appendix A.
Note that the implementation of NbE for simple types is entirely standard [4, 5].
Their interpretation as Agda types is defined as follows:

J 𝜄 K = Nf 𝜄
J () K = ⊤
J 𝜏1 × 𝜏2 K = J 𝜏1 K × J 𝜏2 K
J 𝜏1 ⇒ 𝜏2 K = J 𝜏1 K → J 𝜏2 K

The types (), × and ⇒ are simply interpreted as their counterparts in Agda. For the
base type 𝜄, however, we cannot provide a counterpart in Agda since we do not know
anything about this type. Instead, since the type 𝜄 is not constructed or eliminated by
any specific construct in 𝜆sec, we simply require a normal form as an evidence for
producing a value of type 𝜄—and thus interpret it as Nf 𝜄.
Typing contexts map variables to types, and hence their interpretation is an exe-

cution environment (or equivalently, a semantic substitution) defined like-wise:

J ∅ K = ∅
J Γ , x : 𝜏1 K = J Γ K [Var 𝜏1 ↦→ J 𝜏1 K]

For example, a value 𝛾 which inhabits the interpretation J Γ K denotes the execution
environment for evaluating a term typed in the context Γ.

Given these definitions, evaluation is implemented as a straightforward interpreter
function:

eval x 𝛾 = lookup x 𝛾
eval () 𝛾 = tt

Simple Noninterference by Normalization

101

eval (fst t) 𝛾 = 𝜋1 (eval t 𝛾)
eval (snd t) 𝛾 = 𝜋2 (eval t 𝛾)
eval (< 𝑡1 , 𝑡2 >) 𝛾 = (eval 𝑡1 𝛾 , eval 𝑡2 𝛾)
eval (𝜆 x . t) 𝛾 = 𝜆 v → eval t (𝛾 [x ↦→ v])
eval (t s) 𝛾 = (eval t 𝛾) (eval s 𝛾)

Note that 𝛾 is an execution environment for the term’s context; lookup, 𝜋1 and 𝜋2
are Agda functions; and tt is the constructor of the unit type ⊤. For the case of 𝜆 x . t,
evaluation is expected to return an equivalent semantic function. We compute the
body of this function by evaluating the body term t using the substitution 𝛾 extended
with a mapping which assigns the value v to the variable x—denoted 𝛾 [x ↦→ v].

Reification, on the other hand, is implemented using two helper functions reflect
and reifyVal. The function reflect converts neutral forms to semantic values, while
the dual function reifyVal converts semantic values to normal forms. These functions
are implemented as follows:

reifyVal : J 𝜏 K → Nf 𝜏
reifyVal { 𝜄 } n = n
reifyVal { ()} tt = ()
reifyVal {𝜏1 × 𝜏2 } p =
< reifyVal {𝜏1 } (𝜋1 p) , reifyVal {𝜏2 } (𝜋1 p) >

reifyVal {𝜏1 ⇒ 𝜏2 } f =
𝜆 x . reifyVal {𝜏2 } (f (reflect {𝜏1 } x)) | fresh x

reflect : Ne 𝜏 → J 𝜏 K
reflect { 𝜄 } n = n
reflect { ()} n = tt
reflect {𝜏1 × 𝜏2 } n =

(reflect {𝜏1 } (fst n) , reflect {𝜏2 } (snd n))
reflect {𝜏1 ⇒ 𝜏2 } n =
𝜆 v → reflect {𝜏2 } (n (reifyVal {𝜏1 } v))

Note that the argument inside the braces { } denotes an implicit parameter, which
is the type of the corresponding neutral/value argument of reflect/reifyVal here.
Reflection is implemented by performing a type-directed translation of neutral

forms to semantic values by induction on types. The interpretation of types, defined
earlier, guides our implementation. For example, reflection of a neutral with a function
type must produce a function value since the type ⇒ is interpreted as an Agda
function. For this purpose, we are given the argument value in the semantics and it
remains to construct a function body of the appropriate type. We produce the body
of this function by recursively reflecting a neutral application of the function and
(the reification of) the argument value. The function reifyVal is also implemented in
a similar fashion by induction on types.
To implement reification, recollect that the argument to reify is a function that

results from partially applying the eval function with a term. If the term has type
Γ ⊢ 𝜏 , then the argument, say f , must have the type J Γ K → J 𝜏 K. Thus, to apply

Modular Normalization with Types

102

f , we need an execution environment of the type J Γ K. This environment can be
generated by simply reflecting the variables in the context as follows:

genEnv : (Γ : Ctx) → J Γ K
genEnv ∅ = ∅
genEnv (Γ , x : 𝜏) = genEnv Γ [x ↦→ reflect x]

Finally, we can now implement reify as follows:
reify {Γ } f = let 𝛾 = genEnv Γ in reifyVal (f 𝛾)

We generate an environment 𝛾 to apply the semantic function f , and then convert
the resulting semantic value to a normal form by applying reifyVal.

5.2 NbE for the Security Monad
To interpret a type S ℓ 𝜏 , we need a semantic counterpart in the host language which
is also a monad. Suppose that we define such a monad as an inductive data type
T parameterized by a label ℓ and some type a (which would be J 𝜏 K in this case).
Evidently this monad must allow the implementation of the semantic counterparts
of the terms return, let and up in 𝜆sec as follows:

return : a → T ℓ a
bind : T ℓ a → (a → T ℓ b) → T ℓ b
up : (ℓL ⊑ ℓH) → T ℓL a → T ℓH a

To satisfy this specification, we define the data type T in Agda with the following
constructors:

Return
x : a

return x : T ℓ a

BindN
p : ℓL ⊑ ℓH n : Ne S ℓL 𝜏 f : Var 𝜏 → T ℓH a

bindNe p n f : T ℓH a

The constructor return returns a semantic value in the monad, while bindNe registers
a binding of a neutral to monadic value. These constructors are the semantic equiva-
lent of return and let↑ in the normal forms, respectively. The constructor bindNe is
more general than the required function bind in order to allow the definition of up,
which is defined by induction as follows:

up p (return v) =
return v

up p (bindNe q n f) =
bindNe (trans q p) n (𝜆 x → up p (f x))

To understand this implementation, suppose that p : ℓM ⊑ ℓH for some labels ℓM and
ℓH. A monadic value of type T ℓM a which is constructed by a return can be simply
re-labeled to T ℓH a since return can be used to construct a monadic value on any
label. For the case of bindNe q n f , we have that q : ℓL ⊑ ℓM and n : Ne S ℓL 𝜏1,
hence ℓL ⊑ ℓH by transitivity, and we may simply use bindNe to register n and
recursively apply up on the continuation f to produce the desired result of type
T ℓH a.

Using the type T in the host language, we may now interpret the monad in 𝜆sec as
follows:

Simple Noninterference by Normalization

103

J S ℓ 𝜏 K = T ℓ J 𝜏 K
Having mirrored the monadic primitives in 𝜆sec using semantic counterparts, evalua-
tion is rather simple:

eval (return t) 𝛾 = return (eval t 𝛾)
eval (up p t) 𝛾 = up p (eval t 𝛾)
eval (let x = t in s) 𝛾 =
bind (eval t 𝛾) (𝜆 v → eval s (𝛾 [x ↦→ v]))

For implementing reflection, we can use bindNe to register a neutral binding and
recursively reflect the given variable:

reflect {S ℓ 𝜏 } n =
bindNe refl n (𝜆 x → return (reflect {𝜏 } x))

Since we do not need to increase the sensitivity of the neutral to bind it here, we
simply provide the “reflexive flow” refl : ℓ ⊑ ℓ .
The function reifyVal, on the other hand, is rather straightforward since the con-

structors of T are essentially semantic counterparts of the normal forms, and can
hence be translated to it:

reifyVal {S ℓ 𝜏 } (return v) =
return (reifyVal {𝜏 } v)

reifyVal {S ℓ 𝜏 } (bindNe {p } n f) =
let↑ {p } x = n in reifyVal {𝜏 } (f x)

5.3 Preservation of Semantics
To prove that normalization preserves static semantics of 𝜆sec, we must show that
the normal form of term is equivalent to the term. Since normal forms and terms
belong to different syntactic categories, we must first quote normal forms to state this
relationship using the term equivalence relation≈. This property, called consistency
of normal forms, is stated as follows:

Theorem 5.1 (Consistency of normal forms). For any term Γ ⊢ t : 𝜏 we have that
Γ ⊢ t ≈ ⌜ norm t ⌝ : 𝜏

An attempt to prove consistency by induction on the terms or types fails quickly
since the induction principle alone is not strong enough to prove this theorem. To
solve this issue we must establish a notion of equivalence between a term and its
interpretation using logical relations [22]. Using these relations, we can prove that
evaluation is consistent by showing that it is related to applying a substitution in the
syntax. Following this, we can also prove the consistency of reification by showing
that reifying a value related to a term, yields a normal form which is equivalent to
the term when quoted. The consistency of evaluation and reification yields the proof
of consistency for normal forms.

This proof follows the style of the consistency proof of NbE for STLC using Kripke
logical relations by Coquand [8]. As is the case for sums, NbE for the security monad
uses an inductively defined data type to implement the semantic monad. Hence,
we are able to leverage the proof techniques used to prove the consistency of NbE

Modular Normalization with Types

104

for sums [28] to prove the same for the security monad. We skip the details of the
proof here, but encourage the curious reader to see the Agda mechanization of this
theorem.

6 NONINTERFERENCE FOR 𝜆sec

After developing the necessary machinery to normalize terms in the calculus, we
are ready to state and prove noninterference for 𝜆sec. First, we complete the proof of
noninterference for the program f from Section 4.

6.1 Special Case of Noninterference
Theorem 6.1 (Noninterference for f). Given security levels ℓL and ℓH such that
ℓH @ ℓL and a function ∅ ⊢ f : S ℓH 𝜏 ⇒ S ℓL Bool then ∀ s_1 s_2 : S ℓH 𝜏 .
f s_1 ≈ f s_2

The proof of Theorem 6.1 relies upon two key ingredients: Lemma 4.1 (Section 4),
which characterizes the shape of the normal forms of f ; and consistency of normal
forms, Theorem 5.1 (Section 5.3), which links the semantics of f with that of its
normal forms.

Proof of Theorem 6.1. To show that a function ∅ ⊢ f : S ℓH 𝜏 ⇒ S ℓL Bool is
equivalent when applied to two different secret inputs s_1 and s_2, first, we instantiate
Lemma 4.1 with the normal form of f , denoted by norm f . In this manner, we obtain
that the normal forms of f are exactly the constant function that returns true or
false wrapped in the return. In the former case, by correctness of normalization we
have that f ≈ ⌜ norm f ⌝ ≈ 𝜆 x . return true. By 𝛽-reduction and congruence of
term-level function application, we have that ∀ t. (𝜆 x . return true) t ≈ return true.
Therefore, f s_1 ≈ f s_2. The case when norm f ≡ 𝜆 x . return false follows a
similar argument. □

The noninterference property proven above characterizes what it means for a
concrete class of programs, i.e. those of type ∅ ⊢ f : S ℓH 𝜏 ⇒ S ℓL Bool, to be secure:
the attacker cannot even learn one bit of the secret from using program f . Albeit
interesting, this property does not scale to more complex programs; for instance if
the function f was typed in a non empty context the proof of the above lemma would
not hold. The rest of this section is dedicated to generalize and prove noninterference
from the program f to arbitrary programs written in 𝜆sec. As will become clear,
normal forms of 𝜆sec play a crucial role towards proving noninterference.

6.2 General Noninterference Theorem
In order to discuss general noninterference for 𝜆sec, we must first specify what are the
secret (ℓH) inputs of a program and its public (ℓL) output with respect to an attacker
at level ℓL. The attacker can only learn information of a program by running it with
different secret inputs and then observing its public output. Because the attacker can
only observe outputs at their security level, we restrict the security condition to only
consider programs where outputs are fully observable, i.e., transparent and ground,
to the attacker.

Definition 6.1 (Transparent type).

Simple Noninterference by Normalization

105

• () is transparent at any level ℓ .
• 𝜄 is transparent at any level ℓ .
• 𝜏1 ⇒ 𝜏2 is transparent at ℓ iff 𝜏2 is transparent at ℓ .
• 𝜏1 + 𝜏2 is transparent at ℓ iff 𝜏1 and 𝜏2 are transparent at ℓ .
• 𝜏1 × 𝜏2 is transparent at ℓ iff 𝜏1 and 𝜏2 are transparent at ℓ .
• S ℓ ′ 𝜏 is transparent at ℓ iff ℓ ′ ⊑ ℓ and 𝜏 is transparent at ℓ .

Definition 6.2 (Ground type).

• () is ground.
• 𝜄 is ground.
• 𝜏1 + 𝜏2 is ground iff 𝜏1 and 𝜏2 are ground.
• 𝜏1 × 𝜏2 is ground iff 𝜏1 and 𝜏2 are ground.
• S ℓ 𝜏 is ground iff 𝜏 is ground.

A type 𝜏 is transparent at security level ℓL if the type does not include the security
monad type over a higher security level ℓH. A ground type, on the other hand, is a first
order type, i.e, a type that does not contain a function type. These simplifying restric-
tions over the output type of a program allow us to state a generic noninterference
property over terms and perform induction on the normal forms.

These restrictions do not hinder the generality of our security condition: a program
producing a partially public output, for instance a product S ℓL Bool × S ℓH Bool, can
be transformed to produce a fully public output by applying the snd projection. We
return to this example later at the end of the section. Also note that previous work on
proving noninterference for static IFC languages [1, 17] impose similar restrictions.

Departing from the traditional view of programs as closed terms, i.e. terms without
free variables, in the 𝜆sec calculus we consider all terms for which a typing derivation
exists. This includes terms that contain free variables—unknowns—typed by the
context, which we identify as the program inputs. Note that open terms are more
general since they can always be closed as a function by abstracting over the free
variables.

Now, we state what it means for a context to be secret at level ℓ . These definitions,
dubbed ℓ-sensitivity, force the types appearing in the context to be at least as sensitive
as ℓ .

Definition 6.3 (Context sensitivity).
A context Γ is ℓ-sensitive if and only if for all types 𝜏 ∈ Γ, 𝜏 is ℓ-sensitive. A type 𝜏

is ℓ-sensitive, on the other hand, if and only if:

• 𝜏 is the function type 𝜏1 ⇒ 𝜏2 and 𝜏2 is ℓ-sensitive.
• 𝜏 is the product type 𝜏1 × 𝜏2 and 𝜏1 and 𝜏2 are ℓ-sensitive.
• 𝜏 is the monadic type S ℓ ′ 𝜏1 and ℓ ⊑ ℓ ′.

Next, we define substitutions5, which lay at the core of 𝛽-reduction rules in the
𝜆sec calculus. Substitutions map free variables in a term to other terms possibly typed
in a different context.

5In Section 2 we purposely left capture-avoiding substitutions underspecified, we amend that here.

Modular Normalization with Types

106

Substitution 𝜎 ::= 𝜎∅ | 𝜎 [x ↦→ t]
Γ ⊢sub 𝜎 : Δ

Γ ⊢sub 𝜎 : Δ Γ ⊢ t : 𝜏

Γ ⊢sub 𝜎 [x ↦→ t] : Δ , x : 𝜏 Γ ⊢sub 𝜎∅ : ∅

Fig. 7. Substitutions for 𝜆sec

A substitution is either empty, 𝜎∅ , or is the substitution 𝜎 extended with a new
mapping from the variable x : 𝜏 to term t. We denote t [𝜎] the application of
substitution 𝜎 to term t. Its definition is standard by induction on the term structure,
thus we omit it here and refer the reader to the Agda formalization.
Substitutions, in general, provide a mix of terms of secret and public type to fill

the variables in the context Γ of a program. However, for noninterference we need to
fix the public part of the substitution and allow the secret part to vary. We do so by
splitting a substitution 𝜎 into the composition of a public substitution, Γ ⊢sub 𝜎ℓ𝐿 : Δ,
that fixes the public inputs, and a secret substitution Δ ⊢sub 𝜎ℓ𝐻 : Σ, that restricts Δ
to be ℓH-sensitive. The composition of both, denoted Γ ⊢sub (𝜎ℓ𝐿 ; 𝜎ℓ𝐻) : Σ, maps
variables in context Γ to terms typed in Σ: first, 𝜎ℓ𝐿 maps variables from Γ to terms
in Δ, subsequently, 𝜎ℓ𝐻 maps variables in Δ to terms typed in Σ. Below, we state
ℓL-equivalence of substitutions:

Definition 6.4 (Low equivalence of substitutions).
Two substitutions 𝜎1 and 𝜎2 are ℓL-equivalent , written 𝜎1 ≈ℓ𝐿 𝜎2, if and only if

for all ℓH such that ℓH @ ℓL, there exists a public substitution 𝜎ℓ𝐿 , and two secret
substitutions 𝜎1

ℓ𝐻
and 𝜎2

ℓ𝐻
, such that 𝜎1 ≡ 𝜎ℓ𝐿 ; 𝜎1

ℓ𝐻
and 𝜎2 ≡ 𝜎ℓ𝐿 ; 𝜎2

ℓ𝐻

Informally, noninterference for 𝜆sec states that applying two low equivalent sub-
stitutions to an arbitrary term whose type is ground and transparent yields two
equivalent programs. As previously explained, intuitively a program satisfies such
property if it is equivalent to a constant program: i.e. a program where the output
does not depend on the input—in this case the variables in the typing context. As in
Section 4, instead of defining and proving this on arbitrary terms, we achieve this
using normal forms.

Constant Terms and Normal Forms. We prove the noninterference theorem by
showing that terms of a type at level ℓL, typed in a ℓH-sensitive context, must be
constant. We achieve this in turn by showing that the normal forms of such terms
are constant. Below, we state when a term is constant:

Definition 6.5 (Constant term).
A term Γ ⊢ t : 𝜏 is said to be constant if, for any two substitutions 𝜎1 and 𝜎2, we

have that t [𝜎1] ≈ t [𝜎2].
Similarly, we must define what it means for a normal form to be constant. However,

we cannot state this for normal forms directly using substitutions since the result of
applying a substitution to a normal form may not be a normal form. For example,
the result of substituting the variable x in the normal form x : 𝜄 ⇒ 𝜄 , y : 𝜄 ⊢nf x y : 𝜄

Simple Noninterference by Normalization

107

by the identity function is not a normal form—and cannot be derived syntactically as
a normal form using ⊢nf . Instead, we lean on the shape of the context to state the
property.
If a normal form Γ ⊢nf n : 𝜏 is constant, then there must exist a syntactically

identical derivation ∅ ⊢nf n′ : 𝜏 such that n ≡ n′. However, since n and n′ are typed
in different contexts, Γ and ∅, it is not possible to compare them for syntactic equality.
We solve this problem by renaming the normal form n′ to add as many variables as
mentioned in context Γ. The signature of the renaming function is the following:

ren : {Γ ⩽ Δ} → (Γ ⊢nf 𝜏) → (Δ ⊢nf 𝜏)
The relation ⩽ between contexts Γ and Δ indicates that the variables appearing in Δ
are at least those present in Γ. This relation, called weakening, is defined as follows:

• ∅ ⩽ ∅
• If Γ ⩽ Δ, then Γ ⩽ Δ , x : 𝜏
• If Γ ⩽ Δ, then Γ , x : 𝜏 ⩽ Δ , x : 𝜏

The function ren can be defined by simple induction on the derivation of the normal
forms. Note that terms can also be renamed in the same fashion.

Definition 6.6 (Constant normal form). A normal form Γ ⊢nf n : 𝜏 is constant if
there exists a normal form ∅ ⊢nf n′ : 𝜏 such that ren (n′) ≡ n.

Further, we need a lemma showing that if a term is constant, then so is its normal
form.

Lemma 6.2 (Constant plumbing lemma). If the normal form n of a term Γ ⊢ t : 𝜏 is
constant, then so is t.

The proof follows by induction on the normal forms:

Proof of Lemma 6.2. If n is constant, then there must exist a normal form ∅ ⊢nf
n′ : 𝜏 such that ren (n′) ≡ n. Let the quotation of this normal form ⌜ n′ ⌝ be
some term ∅ ⊢ t′ : 𝜏 . Recall from earlier that terms can also be renamed, hence
we have ren (t′) ≈ ren (⌜ n′ ⌝) by correctness of n′. Since it can be shown that
ren (⌜ n′ ⌝) ≡ ⌜ ren (n′) ⌝, we have that ren (⌜ n′ ⌝) ≡ ⌜ n ⌝, and by correctness
of n, we also have ren (t′) ≈ t — (1).
A substitution 𝜎 maps free variables in a term to terms. The empty substitution,

denoted 𝜎∅ , is the unique substitution, such that Δ ⊢ t′ [𝜎∅] : 𝜏 for any Δ. That
is, applying the empty substitution simply renames the term. We can show that
t′ [𝜎∅] ≡ ren (t′), and hence, by (1), we have t′ [𝜎∅] ≈ t — (2). Since 𝜎∅ renames
a term typed in the empty context, we can show that for any substitution 𝜎 , we have
(t′ [𝜎∅]) [𝜎] ≈ t′ [𝜎∅]. Because 𝜎∅ is also unique, for any two substitutions
𝜎1 and 𝜎2, we have (t′ [𝜎∅]) [𝜎1] ≈ (t′ [𝜎∅]) [𝜎2] by transitivity of ≈ . As a
result, from (2), we achieve the desired result, t [𝜎1] ≈ t [𝜎2], therefore t must be
constant. □

The key insight of our noninterference proof is reflected in the following lemma
which shows how normal forms of 𝜆sec typed in a sensitive context are either constant
or the flow between the security level of the context and the output type is permitted.

Modular Normalization with Types

108

Below we include the proof to showcase how it follows by straightforward induction
on the shape of the normal forms.
Lemma 6.3 (Normal forms do not leak). Given a normal form Γ ⊢nf n : 𝜏 , where
the context Γ is ℓ𝑖 -sensitive, and 𝜏 is a ground and transparent type at level ℓ𝑜 , then
either n is constant or ℓ𝑖 ⊑ ℓ𝑜 .

Proof. By induction on the structure of the normal form n. Note that 𝜆 and case
normal forms need not be considered since the preconditions ensure that 𝜏 cannot be
a function type (dismisses 𝜆), and Γ cannot contain a variable of a sum type (dismisses
case).

• Case 1 (Γ ⊢nf () : ()). The normal form () is constant.
• Case 2 (Γ ⊢nf n : 𝜄). In this case, we are given the neutral n by the [Base] rule

in Figure 6. It can be shown by induction that for all neutrals of type Γ ⊢ne 𝜏 ,
if Γ is ℓ𝑖-sensitive and 𝜏 is transparent at ℓ𝑜 , then ℓ𝑖 ⊑ ℓ𝑜 . Hence, n gives us
that ℓ𝑖 ⊑ ℓ𝑜 .

• Case 3 (Γ ⊢nf return n : S ℓ 𝜏). By applying the induction hypothesis on the
normal form n, we have that n is either constant or ℓ𝑖 ⊑ ℓ𝑜 . In the latter case,
we are done since we already have ℓ𝑖 ⊑ ℓ𝑜 . In the former case, there exists a
normal form n′ such that ren (n′) ≡ n. By congruence of the relation ≡, we
get that return (ren (n′)) ≡ return n. Note that the function ren is defined
as ren (return n′) ≡ return (ren n′), and hence by transitivity of ≡, we have
that
ren (return (n′)) ≡ return n. Thus, the normal form return n is also constant.

• Case 4 (Γ ⊢nf let↑ x = n in m : S ℓ2 𝜏2). For this case, we have a neutral
Γ ⊢ne n : S ℓ1 𝜏1 such that ℓ1 ⊑ ℓ2, by the [LetUp] rule in Figure 6. Similar to
case 2, we have that ℓ𝑖 ⊑ ℓ1 from the neutral n. Hence, ℓ𝑖 ⊑ ℓ2 by transitivity
of the relation ⊑. Additionally, since S ℓ2 𝜏 is transparent at ℓ𝑜 , it must be the
case that ℓ2 ⊑ ℓ𝑜 by definition of transparency. Therefore, once again by
transitivity, we have ℓ𝑖 ⊑ ℓ𝑜 .

• Case 5 (Γ ⊢nf left n : 𝜏1 + 𝜏2). Similar to return.
• Case 6 (Γ ⊢nf right n : 𝜏1 + 𝜏2). Similar to return.

□

The last step to noninterference is an ancillary lemma which shows that terms
typed in ℓH-sensitive contexts are constant:
Lemma 6.4. Given a term Γ ⊢ t : 𝜏 , where the context Γ is ℓH-sensitive, and 𝜏 is a
ground type transparent at ℓL. If ℓH @ ℓL, then t is constant.
The proof follows from lemmas Lemma 6.3 and Lemma 6.2.

Finally, we are ready to formally state and prove the noninterference property
for programs written in 𝜆sec, which effectively demonstrates that programs do not
leak sensitive information. The proof follows from the previous lemmas, which
characterize the behaviour of programs by the syntactic properties of their normal
forms.
Theorem 6.5 (Noninterference for 𝜆sec). Given security levels ℓL and ℓH such that
ℓH @ ℓL; an attacker at level ℓL; two ℓL-equivalent substitutions 𝜎1 and 𝜎2 such that

Simple Noninterference by Normalization

109

𝜎1 ≈ℓ𝐿 𝜎2; and a type 𝜏 that is ground and transparent at ℓL; then for any term
Γ ⊢ t : 𝜏 we have that t [𝜎1] ≈ t [𝜎2].
Proof of Theorem 6.5. Low equivalence of substitutions 𝜎1 ≈ℓ𝐿 𝜎2 gives that

𝜎1 = 𝜎ℓ𝐿 ; 𝜎1
ℓ𝐻

and 𝜎2 = 𝜎ℓ𝐿 ; 𝜎2
ℓ𝐻
. After applying the public substitution

𝜎ℓ𝐿 to the term Γ ⊢ t : 𝜏 , we are left with a term typed in a ℓH-sensitive context
Δ, Δ ⊢ t [𝜎ℓ𝐿] : 𝜏 . By Lemma 6.4, t [𝜎ℓ𝐿] is constant which means that
(t [𝜎ℓ𝐿]) [𝜎1

ℓ𝐻
] ≈ (t [𝜎ℓ𝐿]) [𝜎2

ℓ𝐻
]. By readjusting substitutions using

composition we obtain t ([𝜎ℓ𝐿 ; 𝜎1
ℓ𝐻

]) ≈ t ([𝜎ℓ𝐿 ; 𝜎2
ℓ𝐻

]), which yields
t [𝜎1] ≈ t [𝜎2]. □

6.3 Follow-up Example
To conclude this section, we briefly show how to instantiate the theorem of nonin-
terference for 𝜆sec for programs of type ∅ ⊢ t : S ℓL Bool × S ℓH Bool ⇒ S ℓL Bool
× S ℓH Bool, which are the recurring example for explaining noninterference in the
literature [23, 7]. Adapted to the notion of noninterference based on substitutions,
the corollary we aim to prove is the following:
Corollary 6.6 (Noninterference for t). Given security levels ℓL and ℓH such that
ℓH @ ℓL and a program x : S ℓL Bool × S ℓH Bool ⊢ t : S ℓL Bool × S ℓH Bool then
∀ p : S ℓL Bool , s_1 s_2 : S ℓH Bool. we have that t [x ↦→ (p , s_1)] ≈ t [x ↦→
(p , s_2)].
Because the main noninterference theorem requires the output to be fully ob-

servable by the attacker, we transform t to the desired shape by applying the snd
projection. This is justified because the first component of the output is protected
at level ℓH, which the attacker cannot observe. Below we prove noninterference for
x : S ℓL Bool × S ℓH Bool ⊢ snd t : S ℓH Bool:

Proof of Corollary 6.6. To apply Theorem 6.5 we have to show that both sub-
stitutions are low equivalent, [x ↦→ (p , s_1)] ≈ℓ𝐿 [x ↦→ (p , s_2)] The
key idea is that the substitution [x ↦→ (p , s_1)] can be decomposed into a
public substitution 𝜎ℓ𝐿 ≡ [x ↦→ (p , y)] and two different secret substitutions
where each replaces the variable y by a different secret, 𝜎1

ℓ𝐻
≡ [y ↦→ s_1] and

𝜎2
ℓ𝐻

≡ [y ↦→ s_2]. Now, the proof follows directly from Theorem 6.5. □

7 CONCLUSIONS AND FUTUREWORK
In this paper we have presented a novel proof of noninterference for the 𝜆sec cal-
culus (based on Haskell’s IFC library seclib) using normalization. The simplicity
of the proof relies upon the normal forms of the calculus, which as opposed to
arbitrary terms, are well-principled. To obtain normal forms from terms, we have
implemented normalization using NbE, and shown that normal forms obey use-
ful syntactic-properties such as neutrality and 𝛽𝜂-long form. Most of the auxiliary
lemmas and definitions towards proving noninterference build on these properties.
Because normal forms are well-principled, many cases of the proofs follow directly
by structural induction.
An important difference between our work and previous proofs based on term

erasure is that our proof utilizes the static semantics of the language instead of

Modular Normalization with Types

110

the dynamic semantics. Specifically, our proof of noninterference is not tied to any
particular evaluation strategy, such as call-by-name or call-by-value, assuming the
strategy is adequate with respect to the static semantics.

Perhaps the closest to our line of work is the proof of noninterference by Miyamoto
and Igarashi [17] for a modal lambda calculus using normalization. The main novelty
of our proof is that it works for standard extensions of the simply typed lambda
calculus and does not change the typing rules of the underlying calculus (as pre-
sented and implemented by Russo, Claessen, and Hughes [23]). This makes our proof
technique applicable even in the presence of other useful normalization-preserving
extensions of STLC. For example, it should be possible to extend our proof for 𝜆sec
further with exceptions and other computational effects (à la Moggi [18]) since our
security monad is already an instance of this. Moreover, our proof relies on syntactic
properties of normal forms in an open typing context since normalization is based
on the static semantics of the language.
In this work we have only considered a calculus which models terminating com-

putations. This opens up a question of whether our proof technique is applicable
to languages which support general recursion, where computations need not nec-
essarily terminate. The extensibility of this technique to recursion relies directly
upon the choice of static semantics for normalizing recursion. For example, it may
be possible to extend the proof for 𝜆sec with a fix-point combinator by treating it
as an uninterpreted constant during normalization. That is, it may be sufficient to
normalize the body of the function by ignoring the recursive application, because if
the body does not leak a secret, then its recursive call must not either. Since complete
normalization is not strictly needed for our purposes, we believe that our technique
can also be extended to general recursion.

Our NbE implementation for 𝜆sec extends NbE for Moggi’s computational metalan-
guage [12, 15] with a family of monads parameterized by a pre-ordered set of labels.
This resembles the parameterization of monads by effects specified by a pre-ordered
monoid, also known as graded monads [31, 20], and thus indicates the extensibility
of our NbE algorithm to calculi with graded monads. It would be interesting to see if
our proof technique can be used to prove noninterference for static enforcement of
IFC using graded monads.

Using static semantics means that our work lays a foundation for static analysis of
noninterference-like security properties. This opens up a plethora of exciting oppor-
tunities for future work. For example, one possibility would be to use type-direction
partial evaluation [9] to simplify programs and inspect the resulting programs to
verify if they violate security properties. Another arena would be the extension of our
proof to more expressive IFC calculi such as DCC or MAC [30]. The main challenge
here would be to identify the appropriate static semantics of the language, as they
may not always have been designed with one in mind.

ACKNOWLEDGMENTS
We thank Alejandro Russo, Fabian Ruch, Sandro Stucki and Maximilian Algehed for
the insightful discussions on normalization and noninterference. We would also like
to thank Irene Lobo Valbuena, Claudio Agustin Mista and the anonymous reviewers
at PLAS’19 for their comments on earlier drafts of this paper. This work was funded

Simple Noninterference by Normalization

111

by the Swedish Foundation for Strategic Research (SSF) under the projects WebSec
(Ref. RIT17-0011) and Octopi (Ref. RIT17-0023).

REFERENCES
[1] Martín Abadi et al. “A Core Calculus of Dependency”. In: POPL ’99, Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999. Ed. by AndrewW. Appel
and Alex Aiken. ACM, 1999, pp. 147–160. doi: 10.1145/292540.292555. url:
https://doi.org/10.1145/292540.292555.

[2] Andreas Abel and Christian Sattler. “Normalization by Evaluation for Call-
By-Push-Value and Polarized Lambda Calculus”. In: Proceedings of the 21st
International Symposium on Principles and Practice of Programming Languages,
PPDP 2019, Porto, Portugal, October 7-9, 2019. Ed. by Ekaterina Komendantskaya.
ACM, 2019, 3:1–3:12. doi: 10.1145/3354166.3354168. url: https://doi.org/10.114
5/3354166.3354168.

[3] Maximilian Algehed. “A Perspective on the Dependency Core Calculus”. In:
Proceedings of the 13th Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by
Mário S. Alvim and Stéphanie Delaune. ACM, 2018, pp. 24–28. doi: 10.1145/32
64820.3264823. url: https://doi.org/10.1145/3264820.3264823.

[4] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. “Categorical
Reconstruction of a Reduction Free Normalization Proof”. In: Category Theory
and Computer Science, 6th International Conference, CTCS ’95, Cambridge, UK,
August 7-11, 1995, Proceedings. Ed. by David H. Pitt, David E. Rydeheard, and
Peter T. Johnstone. Vol. 953. Lecture Notes in Computer Science. Springer,
1995, pp. 182–199. doi: 10.1007/3-540-60164-3_27. url: https://doi.org/10.100
7/3-540-60164-3%5C_27.

[5] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. “Extensional nor-
malisation and type-directed partial evaluation for typed lambda calculus
with sums”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004. Ed. by Neil D. Jones and Xavier Leroy. ACM, 2004, pp. 64–76. doi:
10.1145/964001.964007. url: https://doi.org/10.1145/964001.964007.

[6] Ulrich Berger and Helmut Schwichtenberg. “An Inverse of the Evaluation
Functional for Typed lambda-calculus”. In: Proceedings of the Sixth Annual
Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The Nether-
lands, July 15-18, 1991. IEEE Computer Society, 1991, pp. 203–211. doi: 10.1109
/LICS.1991.151645. url: https://doi.org/10.1109/LICS.1991.151645.

[7] William J. Bowman and Amal Ahmed. “Noninterference for free”. In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015. Ed. by
Kathleen Fisher and John H. Reppy. ACM, 2015, pp. 101–113. doi: 10.1145/278
4731.2784733. url: https://doi.org/10.1145/2784731.2784733.

[8] Catarina Coquand. “From Semantics to Rules: A Machine Assisted Analysis”.
In: Computer Science Logic, 7th Workshop, CSL ’93, Swansea, United Kingdom,
September 13-17, 1993, Selected Papers. Ed. by Egon Börger, Yuri Gurevich, and

Modular Normalization with Types

112

Karl Meinke. Vol. 832. Lecture Notes in Computer Science. Springer, 1993,
pp. 91–105. doi: 10.1007/BFb0049326. url: https://doi.org/10.1007/BFb0049326.

[9] Olivier Danvy. “Type-Directed Partial Evaluation”. In: Partial Evaluation -
Practice and Theory, DIKU 1998 International Summer School, Copenhagen,
Denmark, June 29 - July 10, 1998. Ed. by John Hatcliff, Torben Æ. Mogensen,
and Peter Thiemann. Vol. 1706. Lecture Notes in Computer Science. Springer,
1998, pp. 367–411. doi: 10.1007/3-540-47018-2_16. url: https://doi.org/10.100
7/3-540-47018-2%5C_16.

[10] Olivier Danvy, Morten Rhiger, and Kristoffer Høgsbro Rose. “Normalization
by evaluation with typed abstract syntax”. In: J. Funct. Program. 11.6 (2001),
pp. 673–680. doi: 10.1017/S0956796801004166. url: https://doi.org/10.1017/S09
56796801004166.

[11] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”. In: Com-
mun. ACM 19.5 (1976), pp. 236–243. doi: 10.1145/360051.360056. url: https://d
oi.org/10.1145/360051.360056.

[12] Andrzej Filinski. “Normalization by Evaluation for the Computational Lambda-
Calculus”. In: Typed Lambda Calculi and Applications, 5th International Confer-
ence, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings. Ed. by Samson
Abramsky. Vol. 2044. Lecture Notes in Computer Science. Springer, 2001,
pp. 151–165. doi: 10.1007/3-540-45413-6_15. url: https://doi.org/10.1007/3-54
0-45413-6%5C_15.

[13] G. A. Kavvos. “Modalities, cohesion, and information flow”. In: Proc. ACM
Program. Lang. 3.POPL (2019), 20:1–20:29. doi: 10.1145/3290333. url: https://d
oi.org/10.1145/3290333.

[14] Peng Li and Steve Zdancewic. “Arrows for secure information flow”. In: Theor.
Comput. Sci. 411.19 (2010), pp. 1974–1994. doi: 10.1016/j.tcs.2010.01.025. url:
https://doi.org/10.1016/j.tcs.2010.01.025.

[15] Sam Lindley. “Normalisation by evaluation in the compilation of typed func-
tional programming languages”. PhD thesis. University of Edinburgh, UK,
2005. url: http://hdl.handle.net/1842/778.

[16] Conor McBride. “Everybody’s Got To Be Somewhere”. In: Proceedings of the 7th
Workshop on Mathematically Structured Functional Programming, MSFP@FSCD
2018, Oxford, UK, 8th July 2018. Ed. by Robert Atkey and Sam Lindley. Vol. 275.
EPTCS. 2018, pp. 53–69. doi: 10.4204/EPTCS.275.6. url: https://doi.org/10.420
4/EPTCS.275.6.

[17] Kenji Miyamoto and Atsushi Igarashi. “A modal foundation for secure infor-
mation flow”. In: In Proceedings of IEEE Foundations of Computer Security (FCS).
2004, pp. 187–203.

[18] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In: Proceed-
ings of the Fourth Annual Symposium on Logic in Computer Science (LICS ’89),
Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 1989,
pp. 14–23. doi: 10.1109/LICS.1989.39155. url: https://doi.org/10.1109/LICS.198
9.39155.

[19] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1
(1991), pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url: https://doi.org/10.1
016/0890-5401(91)90052-4.

Simple Noninterference by Normalization

113

[20] Dominic A. Orchard and Tomas Petricek. “Embedding effect systems inHaskell”.
In: Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg,
Sweden, September 4-5, 2014. Ed. by Wouter Swierstra. ACM, 2014, pp. 13–24.
doi: 10.1145/2633357.2633368. url: https://doi.org/10.1145/2633357.2633368.

[21] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002. isbn:
978-0-262-16209-8.

[22] Gordon D. Plotkin. “Lambda-definability in the full type hierarchy”. In: To H. B.
Curry: essays on combinatory logic, lambda calculus and formalism. Academic
Press, London-New York, 1980, pp. 363–373.

[23] Alejandro Russo, Koen Claessen, and John Hughes. “A library for light-weight
information-flow security in haskell”. In: Proceedings of the 1st ACM SIGPLAN
Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008.
Ed. by Andy Gill. ACM, 2008, pp. 13–24. doi: 10.1145/1411286.1411289. url:
https://doi.org/10.1145/1411286.1411289.

[24] Deian Stefan et al. “Flexible dynamic information flow control in Haskell”.
In: Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011,
Tokyo, Japan, 22 September 2011. Ed. by Koen Claessen. ACM, 2011, pp. 95–106.
doi: 10.1145/2034675.2034688. url: https://doi.org/10.1145/2034675.2034688.

[25] David Terei et al. “Safe haskell”. In: Proceedings of the 5th ACM SIGPLAN
Symposium on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September 2012.
Ed. by Janis Voigtländer. ACM, 2012, pp. 137–148. doi: 10.1145/2364506.2364524.
url: https://doi.org/10.1145/2364506.2364524.

[26] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory, Second
Edition. Vol. 43. Cambridge tracts in theoretical computer science. Cambridge
University Press, 2000. isbn: 978-0-521-77911-1.

[27] Stephen Tse and Steve Zdancewic. “Translating dependency into parametric-
ity”. In: Proceedings of the Ninth ACM SIGPLAN International Conference on
Functional Programming, ICFP 2004, Snow Bird, UT, USA, September 19-21,
2004. Ed. by Chris Okasaki and Kathleen Fisher. ACM, 2004, pp. 115–125. doi:
10.1145/1016850.1016868. url: https://doi.org/10.1145/1016850.1016868.

[28] Nachiappan Valliappan and Alejandro Russo. “Exponential Elimination for
Bicartesian Closed Categorical Combinators”. In: Proceedings of the 21st In-
ternational Symposium on Principles and Practice of Programming Languages,
PPDP 2019, Porto, Portugal, October 7-9, 2019. Ed. by Ekaterina Komendantskaya.
ACM, 2019, 20:1–20:13. doi: 10.1145/3354166.3354185. url: https://doi.org/10.1
145/3354166.3354185.

[29] Marco Vassena and Alejandro Russo. “On Formalizing Information-Flow Con-
trol Libraries”. In: Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October
24, 2016. Ed. by Toby C. Murray and Deian Stefan. ACM, 2016, pp. 15–28. doi:
10.1145/2993600.2993608. url: https://doi.org/10.1145/2993600.2993608.

[30] Marco Vassena et al. “MAC A verified static information-flow control library”.
In: Journal of Logical and Algebraic Methods in Programming 95 (2018), pp. 148–
180. issn: 2352-2208. doi: https://doi.org/10.1016/j.jlamp.2017.12.003. url:
https://www.sciencedirect.com/science/article/pii/S235222081730069X.

Modular Normalization with Types

114

[31] Philip Wadler and Peter Thiemann. “The marriage of effects and monads”. In:
ACM Trans. Comput. Log. 4.1 (2003), pp. 1–32. doi: 10.1145/601775.601776. url:
https://doi.org/10.1145/601775.601776.

A NBE FOR SUMS
It is tempting to interpret sums component-wise like products and functions as:
J 𝜏1 + 𝜏2 K = J 𝜏1 K ⊎ J 𝜏2 K. However, this interpretation makes it impossible to
implement reflection faithfully: should the reflection of a variable x : 𝜏1 + 𝜏2 be a
semantic value of type J 𝜏1 K (left injection) or J 𝜏2 K (right injection)? We cannot
make this decision since the value which substitutes x may be either of these cases.
The standard solution to this issue is to interpret sums using decision trees [2]. A
decision tree allows us to defer this decision until more information is available about
the injection of the actual value.
As in the previous case for the monadic type T , a decision tree can be defined

as an inductive data type D parameterized by some type interpretation a with the
following constructors:

Leaf
x : a

leaf x : D a

Branch
n : Ne (𝜏1 + 𝜏2) f : Var 𝜏1 → D a g : Var 𝜏2 → D a

branch n f g : D a

The leaf constructor constructs a leaf of the tree from a semantic value, while the
branch constructor constructs a tree which represents a suspended decision over the
value of a sum type. The branch constructor is the semantic equivalent of case in
normal forms.

Decision trees allow us to model semantic sum values, and hence allow the inter-
pretation of the sum type as follows:

J 𝜏1 + 𝜏2 K = D (J 𝜏1 K ⊎ J 𝜏2 K)
We interpret a sum type (in 𝜆sec) as a decision tree which contains a value of the sum
type (in Agda).
As an example, the term false of type Bool, implemented as left (), will be in-

terpreted as a decision tree leaf (inj1 tt) of type D J Bool K since we know the
exact injection. The Agda constructor inj1 denotes the left injection in Agda, and
inj2 the right injection. For a variable x of type Bool, however, we cannot inter-
pret it as a leaf since we don’t know the actual injection that may substitute it.
Instead, it is interpreted as a decision tree by branching over the possible values
as branch x (𝜆 → leaf (inj1 tt)) (𝜆 → leaf (inj2 tt))6—which intuitively
represents the following tree:

x : Bool

false true

In light of this interpretation of sums, the implementation of evaluation for injec-
tions is straightforward since we only need to wrap the appropriate injection inside
a leaf:
6We ignore the argument (as 𝜆) here since it has the uninteresting type ()

Simple Noninterference by Normalization

115

eval (left t) 𝛾 = leaf (inj1 (eval t 𝛾))
eval (right t) 𝛾 = leaf (inj2 (eval t 𝛾))

For evaluating case however, we must first implement a decision procedure since
case is used to make a choice over sums.

Tomake a decision over a tree of typeD J 𝜏 K, we need a functionmkDec : D J 𝜏 K →
J 𝜏 K. It can be implemented by induction on the type 𝜏 using monadic functions fmap
and join on trees, which can in turn be implemented by straightforward structural
induction on the tree. Additionally, we will also need a function which converts a
decision over normal forms to a normal form: convert : D (Nf 𝜏) → Nf 𝜏 . The
implementation of this function is made possible by the fact that branch resembles
case in normal forms, and can hence be translated to it. We skip the implementation
of these functions here, but encourage the reader to see the Agda implementation.

Using these definitions, we can now complete evaluation as follows:
eval (case t (left 𝑥1 → 𝑡1) (right 𝑥2 → 𝑡2)) 𝛾 =
mkDec (fmap match (eval t 𝛾))
where

match : (J 𝜏1 K ⊎ J 𝜏2 K) → J 𝜏 K
match (inj1 v) = eval 𝑡1 (𝛾 [x_1 ↦→ v])
match (inj2 v) = eval 𝑡2 (𝛾 [x_2 ↦→ v])

We first evaluate the term t of type 𝜏1 + 𝜏2 to obtain a tree of type D (J 𝜏1 K ⊎ J 𝜏2 K).
Then, we map the function match which eliminates the sum inside the decision tree
to J 𝜏 K, to produce a tree of type D J 𝜏 K. Finally, we run the decision procedure
mkDec on the resulting decision tree to produce the desired value of type J 𝜏 K.
Reflection for a neutral of a sum type can now be implemented using branch as

follows:
reflect {𝜏1 + 𝜏2 } n =
branch n

(leaf (𝜆 𝑥1 → inj1 (reflect {𝜏1 } 𝑥1)))
(leaf (𝜆 𝑥2 → inj2 (reflect {𝜏2 } 𝑥2)))

As discussed earlier, we construct the decision tree for neutral n using branch. The
subtrees represent all possible semantic values of n and are constructed by reflecting
the variables 𝑥1 and 𝑥2.

The function reifyVal, on the other hand, is implemented similar to evaluation by
eliminating the sum value inside the decision tree into normal forms as follows:

reifyVal {𝜏1 + 𝜏2 } tr = convert (fmap matchNf tr)
where

matchNf : (J 𝜏1 K + J 𝜏2 K) → Nf (𝜏1 + 𝜏2)
matchNf (inj1 x) = left (reifyVal {𝜏1 } x)
matchNf (inj2 y) = right (reifyVal {𝜏2 } y)

With this function, we have completed the implementation of NbE for sums.

Modular Normalization with Types

116

D
Exponential Elimination for Bicartesian
Closed Categorical Combinators

Abstract. Categorical combinators offer a simpler alternative to typed lambda
calculi for static analysis and implementation. Since categorical combinators
are accompanied by a rich set of conversion rules which arise from categorical
laws, they also offer a plethora of opportunities for program optimization. It
is unclear, however, how such rules can be applied in a systematic manner to
eliminate intermediate values such as exponentials, the categorical equivalent of
higher-order functions, from a program built using combinators. Exponential
elimination simplifies static analysis and enables a simple closure-free imple-
mentation of categorical combinators—reasons for which it has been sought
after.
In this paper, we prove exponential elimination for bicartesian closed categor-
ical (BCC) combinators using normalization. We achieve this by showing that
BCC terms can be normalized to normal forms which obey a weak subformula
property. We implement normalization using Normalization by Evaluation, and
also show that the generated normal forms are correct using logical relations.

117

1 INTRODUCTION
Categorical combinators are combinators designed after arrows, or morphisms, in
category theory. Although originally introduced to present the connection between
lambda calculus and cartesian closed categories (CCCs) [13], categorical combinators
have attracted plenty of attention in formal analysis and implementation of various
lambda calculi. For example, they are commonly used to formulate an evaluation
model based on abstract machines [12, 16]. Abadi et al. [1] observe that categorical
combinators “make it easy to derive machines for the 𝜆-calculus and to show the
correctness of these machines”. This ease is attributed to the absence of variables
in combinators, which avoids the difficulty with variable names, typing contexts,
substitution, etc. Recently, categorical combinators have also been used in practical
applications for programming smart contracts on the blockchain [24] and compiling
functional programs [14].

Since categorical combinators are based on categorical models, they are accompa-
nied by a rich set of conversion rules (between combinator terms) which emerge from
the equivalence between morphisms in the model. These conversion rules form the
basis for various correct program transformations and optimizations. For example,
Elliott [14] uses conversion rules from CCCs to design various rewrite rules to opti-
mize the compilation of Haskell programs to CCC combinators. The availability of
these rules raises a natural question for optimizing terms in categorical combinator
languages: can intermediate values be eliminated by applying the conversion rules
whenever possible?

The ability to eliminate intermediate values in a categorical combinator language
has plenty of useful consequences, just as in functional programming. For example,
the elimination of exponentials, the equivalent of high-order functions, from BCC
combinators solves problems created by exponentials in static analysis [27], and
has also been sought after for interpreting functional programs in categories with-
out exponentials ([14], Section 10.2). It has been shown that normalization erases
higher-order functions from a program with first-order input and output types in
the simply typed lambda calculus (STLC) with products and sums [22]—also known
as defunctionalization [25]. Similarly, can we erase exponentials and other interme-
diate values by normalizing programs in the equally expressive bicartesian closed
categorical (BCC) combinators?
We implement normalization for BCC combinators towards eliminating inter-

mediate values, and show that it yields exponential elimination. We first recall the
term language and conversion rules for BCC combinators (Section 2), and provide a
brief overview of the normalization procedure (Section 3). Then, we identify normal
forms of BCC terms which obey a weak subformula property and prove exponential
elimination by showing that these normal forms can be translated to an equivalent
first-order combinator language without exponentials (Section 4 and Section 5).

To assign a normal form to every term in the language, we implement a normaliza-
tion procedure using Normalization by Evaluation (NbE) [8, 9] (Section 6). We then
prove, using Kripke logical relations [20], that normal forms of terms are consistent
with the conversion rules by showing that they are inter-convertible. (Section 7).
Furthermore, we show that exponential elimination can be used to simplify static

Exponential Elimination for Bicartesian Closed Categorical Combinators

119

analysis—while retaining expressiveness—of a combinator language called Simplicity
(Section 8). Finally, we conclude by discussing related work (Section 9) and final
remarks (Section 10).
Although we only discuss the elimination of exponentials in this chapter, the

elimination of intermediate values of other types can also be achieved likewise—
except for products. The reason for this becomes apparent when we discuss the weak
subformula property (in Section 5.1).

We implement normalization andmechanize the correctness proof in the dependently-
typed language Agda [10, 23]. This chapter is also written in literate Agda since
dependent types provide a uniform framework for discussing both programs and
proofs. We use category theoretic terminology to organize the implementation based
on the categorical account of NbE by Altenkirch et al. [4]. However, all the definitions,
algorithms, and proofs here are written in vanilla Agda, and the reader may view
them as regular programming artifacts. Hence, we do not require that the reader
be familiar with advanced categorical concepts. We discuss the important parts of
the implementation here, and encourage the curious reader to see the complete
implementation1 for further details.

2 BCC COMBINATORS
ABCC combinator has an input and an output type, which can be one of the following:
1 (for unit), 0 (for empty), ∗ (for product), + (for sum), ⇒ (for exponential) and base
(for base types). The Agda data type BCC (see Figure 1) defines the term language for
BCC combinators. In the definition, the type Ty denotes a BCC type, and Set denotes
a type definition in Agda (like ∗ in Haskell). Note that the type variables 𝑎, 𝑏 and
𝑐 are implicitly quantified and hidden here. The combinators are self-explanatory
and behave like their functional counterparts. Unlike functions, however, these
combinators do not have a notion of variables or typing contexts.

data BCC : Ty → Ty → Set where
id : BCC a a
• : BCC b c → BCC a b → BCC a c
unit : BCC a 1
init : BCC 0 a
exl : BCC (a ∗ b) a
exr : BCC (a ∗ b) b
pair : BCC a b → BCC a c → BCC a (b ∗ c)
inl : BCC a (a + b)
inr : BCC b (a + b)
match : BCC a c → BCC b c → BCC (a + b) c
curry : BCC (c ∗ a) b → BCC c (a ⇒ b)
apply : BCC (a ⇒ b ∗ a) b

Fig. 1. BCC Combinators
1https://github.com/nachivpn/expelim

Modular Normalization with Types

120

The BCC combinators are accompanied by a number of conversion rules which
emerge from the equational theory of bicartesian closed categories [6]. These rules
can be formalized as an equivalence relation _≈_ : BCC a b → BCC a b → Set
(see Figure 2). In the spirit of categorical laws, the type-specific conversion rules
can be broadly classified as elimination and uniqueness (or universality) rules. The
elimination rules state when the composition of two terms can be eliminated, and
uniqueness rules state the unique structure of a term for a certain type. For example,
the conversion rules for products include two elimination rules (exl-pair, exr-pair)
and a uniqueness rule (uniq-pair):

Note that the operator ⊗ used in the exponential elimination rule (apply-curry) is
defined below. It pairs two BCC terms using pair and applies them on each component
of a product. The components are projected using exl and exr respectively.

⊗ : BCC a b → BCC c d → BCC (a ∗ c) (b ∗ d)
f ⊗ g = pair (f • exl) (g • exr)

The standard 𝛽𝜂 conversion rules of STLC [3, 7] can be derived from the conversion
rules specified here. This suggests that we can perform 𝛽 and 𝜂 conversion for BCC
terms, and normalize them as in STLC. Let us look at a few simple examples.

Example 1. For a term 𝑓 : BCC 𝑎 (𝑏 ∗ 𝑐), pair (exl • 𝑓) (exr • 𝑓) can be converted
to 𝑓 as follows.

eta∗ : {f : BCC a (b ∗ c)}→ pair (exl • f) (exr • f) ≈ f
eta∗ = uniq-pair refl refl

The constructor refl states that the relation ≈ is reflexive. The conversion above
corresponds to 𝜂 conversion for products in STLC.

Example 2. Suppose that we define a combinator uncurry as follows.

uncurry : BCC a (b ⇒ c)→ BCC (a ∗ b) c
uncurry f = apply • f ⊗ id

Given this definition, a term curry (uncurry 𝑓) can be converted to 𝑓 , by unfolding
the definition of uncurry—as curry (apply • 𝑓 ⊗ id)—and then using uniq-curry refl.

eta⇒ : {f : BCC a (b ⇒ c)}→ curry (uncurry f) ≈ f
eta⇒ = uniq-curry refl

Note that Agda unfolds the definition of uncurry automatically for us. The conversion
above corresponds to 𝜂 conversion for functions in STLC.

Example 3. Given a term 𝑡 : BCC𝑎 (𝑏 ∗ 𝑐) such that 𝑡 ≈ (pair 𝑓 𝑔) •ℎ : BCC𝑎 (𝑏 ∗ 𝑐),
t can be converted to the term pair (𝑓 • ℎ) (𝑔 • ℎ) using equational reasoning such
as the following.

𝑡

≈ (pair 𝑓 𝑔) • ℎ By definition
≈ pair (exl • pair 𝑓 𝑔 • ℎ) (exr • pair 𝑓 𝑔 • ℎ) By example 1
≈ pair (𝑓 • ℎ) (exr • pair 𝑓 𝑔 •ℎ) By exl-pair

≈ pair (𝑓 • ℎ) (𝑔 • ℎ) By exr-pair

Exponential Elimination for Bicartesian Closed Categorical Combinators

121

data _≈_ : BCC a b → BCC a b → Set where
– categorical rules

idr :{f : BCC a b}
→ f • id ≈ f

idl : {f : BCC a b}
→ id • f ≈ f

assoc : {h : BCC a b} {g : BCC b c} {f : BCC c d}
→ f • (g • h) ≈ f • (g • h)

– elimination rules

exl-pair : {f : BCC c a} {g : BCC c b}
→ (exl • pair f g) ≈ f

exr-pair : {f : BCC c a} {g : BCC c b}
→ (exr • pair f g) ≈ g

match-inl : {f : BCC a c} {g : BCC b c}
→ (match f g • inl) ≈ f

match-inr : {f : BCC a c} {g : BCC b c}
→ (match f g • inr) ≈ g

apply-curry : {f : BCC (a ∗ b) c}
→ apply • (curry f ⊗ id) ≈ f

– uniqueness rules

uniq-init : {f : BCC 0 a}
→ init ≈ f

uniq-unit : {f : BCC a 1}
→ unit ≈ f

uniq-pair : ∀ {f g} {h : BCC z (a ∗ b)}
→ exl • h ≈ f → exr • h ≈ g → pair f g ≈ h

uniq-curry : {h : BCC a (b ⇒ c)} {f : BCC (a ∗ b) c}
→ apply • h ⊗ id ≈ f → curry f ≈ h

uniq-match : ∀ {f g} {h : BCC (a + b) z}
→ h • inl ≈ f → h • inr ≈ g → match f g ≈ h

– equivalence and congruence rules

refl : {f : BCC a b}
→ f ≈ f

sym : {f g : BCC a b}
→ f ≈ g → g ≈ f

trans : {f g h : BCC a b}
→ f ≈ g → g ≈ h → f ≈ h

congl : {x y : BCC a b} {f : BCC b c}
→ x ≈ y → f • x ≈ f • y

congr : {x y : BCC b c} {f : BCC a b}
→ x ≈ y → x • f ≈ y • f

Fig. 2. Conversion rules for BCC

Modular Normalization with Types

122

Example 4. Given 𝑓 : BCC 𝑎 (𝑏 ⇒ 𝑐) and 𝑔 : BCC 𝑎 𝑏, if 𝑓 can be converted to
curry 𝑓 ′, then the term (apply • pair 𝑓 𝑔) : BCC 𝑎 𝑐 can be converted to 𝑓 ′ • pair id 𝑔
(the implementation is left as an exercise for the reader). Notice that the combinators
curry and apply are eliminated in the result of the conversion. This conversion
corresponds to 𝛽 conversion for functions in STLC, and forms the basis for exponential
elimination.

3 OVERVIEW OF NORMALIZATION
Our goal is to implement a normalization algorithm for BCC terms and show that
normalization eliminates exponentials. We will achieve the latter using a syntactic
property of normal forms called the weak subformula property. To make this property
explicit, we define normal forms as a separate data type Nf as follows.

data Nf : Ty→ Ty→ Set where

Normal forms are not themselves BCC terms, but they can be embedded into BCC
terms using a quotation function q which has the following type.

q : Nf a b → BCC a b

To prove that normalization eliminates exponentials, we show that normal forms
with first-order types can be quoted into a first-order combinator language, called
DBC, as follows.

qD : firstOrd a → firstOrd b → Nf a b → DBC a b

The data type DBC is defined syntactically identical to BCC without the exponential
combinators curry and apply, and with an additional distributivity combinator distr
(see Section 5).

Normalization based on rewriting techniques performs syntactic transformations
of a term to produce a normal form. NbE, on the other hand, normalizes a term
by evaluating it in a suitable semantic model, and extracting a normal form from
the resulting value. Evaluation is implemented as an interpreter function eval, and
extraction of normal forms—also called reification—is implemented as a function reify
(see Section 6). These functions have the following types.

eval : BCC a b → (⟦ a ⟧↠ ⟦ b ⟧)
reify : (⟦ a ⟧↠ ⟦ b ⟧)→ Nf a b

The type ⟦ 𝑎 ⟧ is an interpretation of a BCC type 𝑎 in the model, and similarly for 𝑏.
The type ⟦ 𝑎 ⟧↠ ⟦ 𝑏 ⟧, on the other hand, is a function between interpretations (to
be defined later) and denotes the interpretation of a BCC term of type BCC 𝑎 𝑏.
Normalization is achieved by evaluating a term and then reifiying it, and is thus

implemented as a function norm defined as follows.

norm : BCC a b → Nf a b
norm t = reify (eval t)

To ensure that the normal form generated for a term is correct, we must ensure that
it is convertible to the original term. This correctness theorem is stated by quoting
the normal form as follows.

Exponential Elimination for Bicartesian Closed Categorical Combinators

123

correct-nf : (t : BCC a b) → t ≈ q (norm t)

We prove this theorem using logical relations between BCC terms and values in the
semantic model (see Section 7).

4 SELECTIONS
The evaluation of a term requires an input of the appropriate type. During normal-
ization, since we do not have the input, we must assign a reference to the unknown
input value and use this reference to represent the value. In lambda calculus, these
references are simply variables. Since BCC combinators lack the notion of variables,
we must identify the subset of BCC terms which (intuitively) play the counterpart
role—which is the goal of this section.

If we think of the typing context as the “input type” of a lambda term, then variables
are essentially indices which project an unknown value from the input (a substitution).
This is because typing contexts enforce a product-like structure on the input. For
example, the variable 𝑥 in the body of lambda term Γ, 𝑥 : 𝑎 ⊢ 𝑥 : 𝑎 projects a value of
type 𝑎 from the context Γ, 𝑥 : 𝑎. The BCC equivalent of Γ, 𝑥 : 𝑎 ⊢ 𝑥 : 𝑎 is the term
exl : (Γ ∗ 𝑎) 𝑎. Unlike lambda terms, however, BCC terms do not enforce a specific
type structure on the input, and may also return the input entirely as id : (Γ∗𝑎) (Γ∗𝑎).
Hence, as opposed to projections, we need a notion of selections.
Specific BCC terms can be used to select an unknown value from the input, and

these terms can be defined explicitly by the data type Sel (see Figure 3). A term of
type Sel 𝑎 𝑏 denotes a selection of 𝑏 from the input 𝑎. When the input is a product,
the constructor drop drops the second component, and applies a given selection
to the first component. The constructor keep, on the other hand, keeps the second
component unaltered and applies a selection to the first component. We cannot select
further from the input if it is not a product, and hence the remaining constructors,
with the prefix end, state that we must simply return the input as is—thereafter
referred to as end- constructors.

data Sel : Ty → Ty→ Set where
endu : Sel 1 1
endi : Sel 0 0
endb : Sel base base
ends : Sel (a + b) (a + b)
ende : Sel (a ⇒ b) (a ⇒ b)
drop : Sel a b → Sel (a ∗ c) b
keep : Sel a b → Sel (a ∗ c) (b ∗ c)

Fig. 3. Selections

Note that the four end- constructors enable the definition of a unique identity
selection2, iden : Sel a a. This selection can be defined by induction on the type a,
2We prefer to derive the identity selection as opposed to adding it as a constructor, to avoid ambiguity
which could be created between selections iden and (keep iden), both of the type Sel (𝑎1 ∗ 𝑎2) (𝑎1 ∗ 𝑎2) .
The derived identity avoids this ambiguity by definition.

Modular Normalization with Types

124

where the only interesting case of products is defined as below. The remaining cases
can be defined using the appropriate end- constructor.
iden : {a : Ty}→ Sel a a
iden {a1 ∗ a2} = keep iden
– end- for remaining cases

Figure 4 illustrates the use of selections by examples.

drop iden : Sel ((𝑎 + 𝑏) ∗ 𝑐) (𝑎 + 𝑏)
keep (drop iden) : Sel (𝑎 ∗ 𝑏 ∗ 𝑐) (𝑎 ∗ 𝑐)

drop (keep (drop iden)) : Sel (𝑎 ∗ 𝑏 ∗ 𝑐 ∗ 𝑑) (𝑎 ∗ 𝑐)

Fig. 4. Examples of selections

Selections form the basis for the semantic interpretation of BCC terms, and hence
enable the implementation of NbE. To this extent, they have the following properties.

Property 4.1 (Category of selections). Selections define a category where the objects
are types and a morphism between two types 𝑎 and 𝑏 is a selection of type Sel 𝑎 𝑏.
The identity morphisms are defined by iden, and morphism composition can be
defined by straight-forward induction on the morphisms as a function of type _◦_ :
Sel b c → Sel a b → Sel a c. The identity and associativity laws of a category (sel-idl,
sel-idr and sel-assoc below) can be proved using Agda’s built-in syntactic equality ≡
by induction on the morphisms. These laws have have the following types in Agda.
sel-idl : {s : Sel a b}→ iden ◦ s ≡ s
sel-idr : {s : Sel a b}→ s ◦ iden ≡ s
sel-assoc : {s1 : Sel c d} {s2 : Sel b c} {s3 : Sel a b}
→ (s1 ◦ s2) ◦ s3 ≡ s1 ◦ (s2 ◦ s3)

Property 4.2 (Faithful embedding). Selections can be faithfully embedded into
BCC terms since they are simply a subset of BCC terms. This embedding can be
implemented by induction on the selection, as follows.
embSel : Sel a b → BCC a b
embSel (drop e) = embSel e • exl
embSel (keep e) = pair (embSel e • exl) exr
– id for remaining cases

5 NORMAL FORMS
In this section, we present normal forms for BCC terms, and prove exponential
elimination using them. It is important to note that these normal forms are not
normal forms of the conversion rules specified by the relation ≈, but rather are a
convenient syntactic restriction over BCC terms for proving exponential elimination.
Precisely, they are normal forms of BCC terms which obey a weak subformula
property—defined later in this section. This characterization is based on normal
forms of proofs in logic, as opposed to normal forms of terms in lambda calculus.

Exponential Elimination for Bicartesian Closed Categorical Combinators

125

Normal forms are defined mutually with neutral forms (see Figure 5). Roughly,
neutral forms are eliminators applied to selections, and they represent terms which
are blocked during normalization due to unavailability of the input. The neutral
form constructor sel embeds a selection as a base case of neutrals; while fst, snd and
app represent the composition of the eliminators exl, exr and apply (respectively) to
neutrals.
The normal form constructors unit, pair and curry represent their BCC term

counterparts; ne-0 and ne-b embed neutrals which return values of type 0 and base
(respectively) into normal forms; left and right represent the composition of the
injections inl and inr respectively; and case represents the BCC term case below,
which is an eliminator of sums defined using distributivity of products over sums.
Note that the BCC term Distr implements this distributivity requirement, and can be
derived using exponentials—see Appendix A.2.

– Distr : BCC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))

case’ : BCC a (b + c)→ BCC (a ∗ b) d → BCC (a ∗ c) d → BCC a d
case’ x f g = match f g • Distr • pair id x

The quotation functions are implemented as a simple syntax-directed translation
by mapping neutrals and normal forms to their BCC counterparts as discussed
above. For example, the quotation of the neutral form fst 𝑥—where 𝑥 has the type
Ne 𝑎 (𝑏 ∗ 𝑐)—is simply exl : (𝑏 ∗ 𝑐) 𝑏 composed with the quotation of 𝑥 . Similarly,
the quotation of left 𝑥 is inl composed with the quotation of its argument 𝑥 . We use
the derived term case’ to quote the normal form case.
Note that the normal forms resemble 𝛽𝜂 long forms of STLC with products and

sums [2], but differ with respect to the absence of typing contexts and variables. In
place of variables, we use selections in neutral forms—this is an important difference
since it allows us to implement reflection, a key component of reification (discussed
later in Section 6).

In the rest of this section, we will define the weak subformula property, show that
all normal forms obey it, and prove exponential elimination as a corollary.

5.1 Weak Subformula Property
To understand the need for a subformula property, let us suppose that we are given a
term 𝑡 : BCC (1 ∗ 1) 1. Does 𝑡 use exponentials? Unfortunately, we cannot say much
about the presence of curry and apply in the subterms without inspecting the body
of the term itself. Term 𝑡 could be something as simple as exl or it could be:

apply • (pair (curry unit • exl) exr) : BCC (1 ∗ 1) 1
But with an appropriate subformula property, however, this becomes an easy task.
Let us suppose that 𝑡 : BCC (1 ∗ 1) 1 has a property that the input and output types
of all its subterms occur in 𝑡 ’s input (1 ∗ 1) and/or output (1) type. In this case, what
can we say about the presence of curry and/or apply in 𝑡? Well, it would not contain
any! The input and output types of all the subterms would be 1 and/or products of it,
and hence it is impossible to find a curry or an apply in a subterm. Let us define this
property precisely and show that normal forms obey it by construction.

The occurrence of a type in another is defined as follows.

Modular Normalization with Types

126

data Nf (a : Ty) : Ty→ Set where
unit : Nf a 1
ne-0 : Ne a 0→ Nf a b
ne-b : Ne a base→ Nf a base
left : Nf a b → Nf a (b + c)
right : Nf a c → Nf a (b + c)
pair : Nf a b → Nf a c → Nf a (b ∗ c)
curry : Nf (a ∗ b) c → Nf a (b ⇒ c)
case : Ne a (b + c)→ Nf (a ∗ b) d → Nf (a ∗ c) d → Nf a d

data Ne (a : Ty) : Ty → Set where
sel : Sel a b → Ne a b
fst : Ne a (b ∗ c)→ Ne a b
snd : Ne a (b ∗ c)→ Ne a c
app : Ne a (b ⇒ c) → Nf a b → Ne a c

q : Nf a b → BCC a b
q unit = unit
q (ne-b x) = qNe x
q (ne-0 x) = init • qNe x
q (left n) = inl • q n
q (right n) = inr • q n
q (pair m n) = pair (q m) (q n)
q (curry n) = curry (q n)
q (case x m n) = case’ (qNe x) (q m) (q n)

qNe : Ne a b → BCC a b
qNe (sel x) = embSel x
qNe (fst x) = exl • qNe x
qNe (snd x) = exr • qNe x
qNe (app x n) = apply • pair (qNe x) (q n)

Fig. 5. Normal forms and quotation

Definition 5.1 (Weak subformula). A type 𝑏 is a weak subformula of 𝑎 if 𝑏 ◁ 𝑎,
where ◁ is defined as follows.

data _◁_ : Ty → Ty→ Set where
self : a ◁ a
subl : {_⊗_ : BinOp} → a ◁ b → a ◁ (b ⊗ c)
subr : {_⊗_ : BinOp} → a ◁ c → a ◁ (b ⊗ c)
subp : a ◁ c → b ◁ d → (a ∗ b) ◁ (c ∗ d)

For a binary type operator ⊗ which ranges over ∗, + or ⇒, this definition states that:
• 𝑎 is a weak subformula of 𝑎 (self)

Exponential Elimination for Bicartesian Closed Categorical Combinators

127

• 𝑎 is a weak subformula of 𝑏 ⊗ 𝑐 if 𝑎 is a weak subformula of 𝑏 (subl) or 𝑎 is a
weak subformula of 𝑐 (subr)

• 𝑎 ∗ 𝑏 is a weak subformula of 𝑐 ∗ 𝑑 if 𝑎 is a weak subformula of 𝑐 and 𝑏 is a
weak subformula of 𝑑 (subp).

The constructors self, subl and subr define precisely the concept of a subformula
in proof theory [26]. For BCC terms, however, we also need subp which weakens the
subformula definition by relaxing it up to products. To understand this requirement,
we must first define the following property for normal forms.

Definition 5.2 (Weak subformula property). A normal form of type Nf 𝑎 𝑏 obeys
the weak subformula property if, for all its subterms of type Nf i o, we have that i ◁
a ∗ b and o ◁ a ∗ b.
Do all normal forms obey this property? It is easy to see that the normal forms

constructed using unit, left, right and pair obey the weak subformula property given
their subterms do the same. For instance, the constructor left returns a normal form
of type Nf 𝑎 (𝑏 + 𝑐), where the input type (𝑎) and output type (𝑏) of its subterm Nf 𝑎 𝑏
occur in 𝑎 and (𝑏 + 𝑐). Hence, if a subterm 𝑡 : Nf 𝑎 𝑏 obeys the weak subformula
property, then so does left 𝑡 .
To understand why curry satisfies the weak subformula property, recall its defi-

nition as a normal form constructor of type BCC (𝑐 ∗ 𝑎) 𝑏 → BCC 𝑐 (𝑎 ⇒ 𝑏). The
input type 𝑐 ∗ 𝑎 of its subterm argument is evidently not a subformula—as usually
defined in proof theory—of the types 𝑐 or 𝑎 ⇒ 𝑏. However, by subp, we have that
the type 𝑐 ∗ 𝑎 is a weak subformula of the product of the input and output types
𝑐 ∗ (𝑎 ⇒ 𝑏). This is precisely the need for weakening the definition of a subformula
with subp3. Specifically, the proof of (𝑐 ∗ 𝑎) ◁ 𝑐 ∗ (𝑎 ⇒ 𝑏) is given by subp (self)
(subl self).

On the other hand, the definition of the constructor case looks a bit suspicious
since it allows the types 𝑏 and 𝑐 which do not occur in final typeNf 𝑎 𝑑 . To understand
why case also satisfies the weak subformula property, we must establish the following
property about neutral forms, which we shall call neutrality.

Property 5.1. Given a neutral form Ne 𝑎 𝑏, we have that 𝑏 is a weak subformula of
𝑎, i.e., neutrality : Ne 𝑎 𝑏 → 𝑏 ◁ 𝑎.

Proof. By induction on neutral forms. For the base case sel, we need a lemma
about neutrality of selections, which can be implemented by an auxiliary function
neutrality-sel : Sel 𝑎 𝑏 → 𝑏 ◁ 𝑎 by induction on the selection. For the other cases, we
simply apply the induction hypothesis on the neutral subterm. □

Due to neutrality of the neutral form Ne a (b + c) in the definition of case, we
have that (𝑏 + 𝑐) ◁ 𝑎, and hence (𝑏 + 𝑐) ◁ (𝑎 ∗ 𝑑). As a result, case also obeys the
weak subformula property. Similarly, ne-0 and ne-b also obey the weak subformula
property as a consequence of neutrality. Thus, we have the following theorem.

Theorem 5.1. All normal forms, as defined by the data type Nf, satisfy the weak
subformula property.
3In logic, however, the requirement for weakening a subformula by products is absent, since an equivalent
definition of curry as Γ, 𝑎 ⊢ 𝑏 → Γ ⊢ 𝑎 ⇒ 𝑏 uses context extension (,) instead of products (∗)

Modular Normalization with Types

128

Proof. By induction on normal forms, as discussed above. □

Notice that, unlike normal forms, arbitrary BCC terms need not satisfy the weak
subformula property. The term apply • (pair (curry unit • exl) exr) discussed above is
already an example of such a term. More specifically, its subterm apply has the input
type (1⇒ 1) ∗ 1, which does not occur in (1 ∗ 1) ∗ 1—i.e., (1⇒ 1) ∗ 1 ⋪ (1 ∗ 1) ∗ 1.
However, all BCC terms, including the ones which do not satisfy the weak subformula
property, can be converted to terms which satisfy this property. This conversion
is precisely the job of normalization. For instance, the previous example can be
converted to unit : BCC (1 ∗ 1) 1 using uniq-unit. A normalization algorithm
performs such conversions automatically whenever possible.

Since neutral forms offer the intuition of an “eliminator”, it might be disconcerting
to see case, an eliminator of sums, oddly defined as a normal form. But suppose that
it was defined in neutrals as follows.

case? : Ne 𝑎 (𝑏 + 𝑐) → Nf (𝑎 ∗ 𝑏) 𝑑 → Nf (𝑎 ∗ 𝑐) 𝑑 → Ne 𝑎 𝑑

Such a definition breaks neutrality (Property 5.1) since we cannot prove that𝑑 ◁𝑎, and
subsequently breaks the weak subformula property of normal forms (Theorem 5.1).
But what about the following definition where the first argument to case is normal,
instead of neutral?

case? : Nf 𝑎 (𝑏 + 𝑐) → Nf (𝑎 ∗ 𝑏) 𝑑 → Nf (𝑎 ∗ 𝑐) 𝑑 → Nf 𝑎 𝑑

Such a definition also breaks the weak subformula property—for the exact same
reason which caused our suspicion in the first place: 𝑏 and 𝑐 do not occur in 𝑎, 𝑑 or
𝑎 ∗ 𝑑 .

5.2 Syntactic Elimination of Exponentials
Exponential elimination can be proved as a simple corollary of the weak subformula
property of normal forms. If 𝑎 and 𝑏 are first-order types, i.e., if the type constructor
⇒ does not occur in types 𝑎 or 𝑏, then we can be certain that the subterms of Nf 𝑎 𝑏
do not use curry (from Nf) or app (from Ne). This follows directly from the weak
subformula property (Theorem 5.1). To show this explicitly, let us quote such normal
forms to a first-order combinator language based on distributive bicartesian categories
(DBC) [6].

The DBC term language is defined by the data type DBC, which includes all the
BCC term constructors except Curry and Apply—although most of them have been
left out here for brevity. Additionally, it also has a distributivity constructor distr
which distributes products over sums. The constructor distr is needed to implement
the BCC term case’, which is in turn needed to quote the normal form case (as earlier).
This is because distributivity can no longer be derived in the absence of exponentials.

To restrict the input and output to first-order types, suppose that we define a pred-
icate on types, firstOrd : Ty → Set, which disallows the occurrence of exponentials
in a type. Given this predicate, we can now define quotation functions qNeD and qD
as below. The implementation of the function qNeD is similar to that of the function
qNe (discussed earlier) for most cases, and similarly for qD. The only interesting
cases are that of the exponentials, and these can be implemented as follows.

Exponential Elimination for Bicartesian Closed Categorical Combinators

129

data DBC : Ty → Ty → Set where
id : DBC a a
• : DBC b c → DBC a b → DBC a c
– exl, exr, pair, init

– inl, inr, match, unit

distr : DBC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))

Fig. 6. DBC combinators

qNeD : firstOrd a → Ne a b → DBC a b
qNeD p (app n _) = ⊥-elim (expNeutrality p n)

qD : firstOrd a → firstOrd b → Nf a b → DBC a b
qD p q (curry n) = ⊥-elim q

For neutrals, we escape having to quote app because such a case is impossible:
We have a proof 𝑝 : firstOrd 𝑎 which states that input type 𝑎 does not contain any
exponentials. However, the exponential return type of 𝑛, say 𝑏 ⇒ 𝑐 , must occur in
𝑎 by neutrality of 𝑛 : Ne 𝑎 (𝑏 ⇒ 𝑐)—which contradicts the proof 𝑝 . Hence, such a
case is not possible. This reasoning is implemented by applying the function ⊥-elim
with a proof of impossibility produced using an auxiliary function expNeutrality :
firstOrd 𝑎 → Ne 𝑎 𝑏 → firstOrd 𝑏. Similarly, we escape the quotation of the normal
form curry since Agda automatically inferred that such a case is impossible. This is
because a proof 𝑞 which states that the output 𝑏 is not an exponential, is contradicted
by the definition of curry which states that it must be—hence 𝑞 must be impossible.

Although we have shown the syntactic elimination of exponentials using normal
forms, we are yet to show that there exists an equivalent normal form for every term.
For this, we must implement normalization and prove its correctness.

6 NORMALIZATION FOR BCC
To implement evaluation and reification, we must first define an appropriate inter-
pretation for types and terms. A naive Set-based interpretation (such as ⟦_⟧n below)
which maps BCC types to their Agda counterparts fails quickly.

⟦ 1 ⟧n = ⊤
⟦ 0 ⟧n = ⊥
⟦ base ⟧n = ??
⟦ t1 ∗ t2 ⟧n = ⟦ t1 ⟧n × ⟦ t2 ⟧n
⟦ t1 + t2 ⟧n = ⟦ t1 ⟧n ⊎ ⟦ t2 ⟧n
⟦ t1 ⇒ t2 ⟧n = ⟦ t1 ⟧n→ ⟦ t2 ⟧n
What should be the correct interpretation of the type base? The naive interpretation
also makes it impossible to implement reflection for the empty and sum types, since
their inhabitants cannot be faithfully represented in such an interpretation (see
Section 6.3). To address this problem, we must first define an appropriate semantic
model.

Modular Normalization with Types

130

6.1 Interpretation in Presheaves
To implement NbE, our choice of semantic model for interpretation of BCC types
must allow us to implement both evaluation and reification. NbE for STLC can be
implemented by interpreting it in presheaves over the category of weakenings [4] [2].
The semantic equivalence of BCC combinators and STLC suggests that it should be
possible to interpret BCC terms in presheaves as well. The difference, however, is
that we will interpret BCC in presheaves over the category of selections (instead
of weakenings). Such a presheaf, for our purposes, is simply the following record
definition:

record Pre : Set1 where
field
In : Ty→ Set
lift : {i j : Ty}→ Sel j i → (In i → In j)

Intuitively, an occurrence In 𝑖 can be understood as a Set interpretation indexed
by an input type 𝑖 . The function lift can be understood as a utility function which
converts a semantic value for the input 𝑖 to a value for a “larger” input 𝑗 , for a given
selection of 𝑖 from 𝑗 .

For the category theory-aware reader, notice that Pre matches the expected defini-
tion of a presheaf as a functor which maps objects (using In) and morphisms (using
lift) in the opposite category of the category of selections to the Set-category. We
skip the functor laws of the presheaf in the Pre record to avoid cluttering the normal-
ization procedure, and instead prove them separately as needed for the correctness
proofs later.

With the definition of a presheaf, we can now implement the desired interpretation
of types as ⟦_⟧ : Ty → Pre. Intuitively, a presheaf model allows us to interpret a
BCC type as an Agda type for a given input type—or equivalently for a given typing
context. To implement the function ⟦_⟧, we will need various presheaf constructions
(instances of Pre)—defining these is the goal of this section. Note that all names
ending with ’ denote a presheaf.

1’ : Pre
1’ .In _ = ⊤
1’ .lift _ _ = tt

0’ : Pre
0’ .In _ = ⊥
0’ .lift _ ()

Fig. 7. Unit and Empty presheaves

The unit presheaf maps all input types to the type ⊤ (unit type in Agda) and empty
presheaf maps it to ⊥ (empty type in Agda) (see Figure 7). The implementation of lift
is trivial in both cases since the only inhabitant of ⊤ is tt, and ⊥ has no inhabitants.

The product of two presheaves 𝐴 and 𝐵 is defined component-wise as follows.

∗’ : Pre → Pre→ Pre
(A ∗’ B) .In i = A .In i × B .In i
(A ∗’ B) .lift s (x , y) = (A .lift s x , B .lift s y)

Exponential Elimination for Bicartesian Closed Categorical Combinators

131

The function lift is implemented component-wise since 𝑠 has the type Sel 𝑗 𝑖 , 𝑥
has the type 𝐴 .In 𝑖 , 𝑦 has the type 𝐵 .In 𝑖 , and the result must be a value of type
𝐴 .In 𝑗 × 𝐵 .In 𝑗 . Similarly, the sum of two presheaves is also defined component-wise
as follows.

+’ : Pre → Pre → Pre
(A +’ B) .In i = A .In i ⊎ B .In i
(A +’ B) .lift s (inj1 x) = inj1 (A .lift s x)
(A +’ B) .lift s (inj2 x) = inj2 (B .lift s x)

It is tempting to implement an exponential presheaf _⇒’_ component wise (like
x’), but this fails at the implementation of lift: given Sel 𝑗 𝑖 , we can not lift a function
(𝐴 .In 𝑖 → 𝐵 .In 𝑖) to (𝐴 .In 𝑗 → 𝐵 .In 𝑗) directly. To solve this, we must implement a
slightly more general version which allows for lifting as follows.

⇒’ : Pre → Pre → Pre
(A ⇒’ B) .In i = {i1 : Ty} → Sel i1 i → A .In i1 → B .In i1
(A ⇒’ B) .lift s f s’ = f (s ◦ s’)
Recall that the operator ◦ implements composition of selections. The interpretation
of the exponential presheaf is defined for a given input type 𝑖 , as a function (space)
for all selections of the type 𝑖1 from 𝑖 [18]—which gives us the required lifting by
composition of the selections.

BCC terms also define presheaves when indexed by the output type.

BCC’ : Ty → Pre
BCC’ o .In i = BCC i o
BCC’ o .lift s t = liftBCC s t

To implement liftBCC, recollect that selections can be embedded into BCC terms
using the embSel function (from Section 4). Hence, lifting BCC terms can be imple-
mented easily using composition, as follows.

liftBCC : Sel j i → BCC i a → BCC j a
liftBCC s t = t • embSel s

Similarly, normal forms and neutral forms also define presheaves when indexed by
the output type (see Figure 8). The implementation of lift for normal forms (litfNf)
can be defined by straight-forward induction on the normal form—and similarly for
liftNe.

Nf’ : Ty→ Pre
Nf’ o .In i = Nf i o
Nf’ o .lift s n = liftNf s n

Ne’ : Ty → Pre
Ne’ o .In i = Ne i o
Ne’ o .lift s n = liftNe s n

Fig. 8. Normal and Neutral form presheaves

For notational convenience, let us define a type alias Sem for values in the inter-
pretation:

Modular Normalization with Types

132

Sem : Ty → Pre → Set
Sem x P = P .In x

For example, a value of type Sem 𝑎 ⟦ b ⟧ denotes a “semantic value” in the interpre-
tation ⟦ b ⟧ indexed by the input type 𝑎. When the input is irrelevant, we simply
skip mentioning it and say “value in the interpretation”.

A BCC term is interpreted as a natural transformation between presheaves, which
is defined as follows.

↠ : Pre → Pre → Set
A↠ B = {i : Ty} → Sem i A→ Sem i B

Intuitively, this function maps semantic values in 𝐴 to semantic values in 𝐵 (for the
same input type 𝑖).

6.2 NbE for CCC Fragment
NbE for the fragment of BCC which excludes the empty and sum types, namely
the CCC fragment, is rather simple—let us implement this first in this section. The
presheaves defined in the previous section allow us to address the issue from earlier
for interpreting the type base. The interpretation for types in the CCC fragment is
defined as follows.

⟦_⟧ : Ty → Pre
⟦ 1 ⟧ = 1’
⟦ base ⟧ = Nf’ base
⟦ a ∗ b ⟧ = ⟦ a ⟧ ∗’ ⟦ b ⟧
⟦ a ⇒ b ⟧ = ⟦ a ⟧ ⇒’ ⟦ b ⟧
The unit, product and exponential types are simply interpreted as their presheaf
counterparts. The base type, on the other hand, is interpreted as the presheaf of nor-
mal forms indexed by base. This is because the definition of BCC has no combinators
specifically for base types, which means that a term BCC 𝑖 base must depend on its
input for producing a base value. Hence, we interpret it as a family of normal forms
which return base for any input 𝑖—which is precisely the definition of the Nf’ base
presheaf. Note that this interpretation of base types is fairly standard [17].

Having defined the interpretation of types, we can now define the interpretation
of BCC terms, i.e., evaluation, as follows.

eval : BCC a b → (⟦ a ⟧↠ ⟦ b ⟧)
eval id x = x
eval (f • g) x = eval f (eval g x)
eval unit x = tt
eval exl (x1 , _) = x1
eval exr (_ , x2) = x2
eval (pair t1 t2) x = eval t1 x , eval t2 x
eval apply (f , x) = f iden x
eval {a} (curry t) x = λ s y → eval t (lift ⟦ a ⟧ s x , y)

Exponential Elimination for Bicartesian Closed Categorical Combinators

133

The function eval interprets the term id as the the identity function, term compo-
sition • as function composition, exl as the first projection, and so on for the other
simple cases. Let us take a closer look at the exponential fragment.
To interpret apply for a given function 𝑓 (of type Sem 𝑖 ⟦a1 ⇒ a2⟧) and its argu-

ment 𝑥 (of type Sem 𝑖 ⟦ 𝑎1 ⟧), we must return a value for its application (of type
Sem 𝑖 ⟦ 𝑎2 ⟧). Recollect from the definition of the exponential presheaf that an
exponential is interpreted as a generalized function for a given selection. In this
case, we do not need this generality since the function and its argument are both
semantic values for the same input type 𝑖 . Hence, we simply use the identity selection
iden : Sel 𝑖 𝑖 , to obtain a suitable function which accepts the argument 𝑦 .
The interpretation of a term curry 𝑡 (of type BCC 𝑎 (𝑏1 ⇒ 𝑏2)) for a given 𝑥

(of type Sem 𝑖 ⟦ 𝑎 ⟧) must be a function (of type Sem 𝑖1 ⟦ 𝑏1 ⇒ 𝑏2 ⟧) for a given
selection 𝑠 (of type Sel 𝑖1 𝑖). We achieve this by recursively evaluating 𝑡 (of type
BCC (𝑎 ∗ 𝑏1) 𝑏2), with a pair of arguments (of type Sem 𝑖1 ⟦ 𝑎 ⟧ and Sem 𝑖1 ⟦ 𝑏1 ⟧).
For the first component, we could use 𝑥 , but since it is a semantic value for the input
𝑖 instead of 𝑖1, we must first lift it to 𝑖1 using the selection 𝑠—which explains the
occurrence of lift.
To implement the reification function reify : (⟦ 𝑎 ⟧↠ ⟦ 𝑏 ⟧) → Nf 𝑎 𝑏, we need

two natural transformations: reflect : Ne’ 𝑎 ↠ ⟦ 𝑎 ⟧ and reifyVal : ⟦ b ⟧↠ Nf’ 𝑏.
The former converts a neutral to a semantic value, and the latter extracts a normal
form from the semantic value. Using these functions, we can implement reification
as follows.

reify : (⟦ a ⟧↠ ⟦ b ⟧)→ Nf a b
reify {a} f = let y = reflect {a} (sel iden)

in reifyVal (f y)

The main idea here is the use of reflection to produce a value of type Sem 𝑎 𝑎. This
value enables us to apply the function 𝑓 to produce a result of type Sem a ⟦ b ⟧. The
resulting value is then used to apply reifyVal and return a normal form of type Nf a
b.

The natural transformations used in reification are implemented as follows.

reflect : {a : Ty}→ Ne’ a↠ ⟦ a ⟧
reflect {1} x = tt
reflect {base} x = ne-b x
reflect {a1 ∗ a2} x = reflect {a1} (fst x) , reflect {a2} (snd x)
reflect {a1 ⇒ a2} x = λ s y →
reflect {a2} (app (liftNe s x) (reifyVal y))

reifyVal : {b : Ty}→ ⟦ b ⟧↠ Nf’ b
reifyVal {1} x = unit
reifyVal {base} x = x
reifyVal {b1 ∗ b2} x = pair (reifyVal (proj1 x)) (reifyVal (proj2 x))
reifyVal {b1 ⇒ b2} x =
curry (reifyVal (x (drop iden) (reflect {b1} (snd (sel iden)))))

Modular Normalization with Types

134

Reflection is implemented by performing a type-directed translation of neutral
forms to semantic values. For example, in the product case, a pair is constructed
by recursively reflecting the components of the neutral. For the exponential case,
the reflection of a neutral 𝑥 must return a function which accepts a selection 𝑠 , an
argument 𝑦, and returns a semantic value for the application of the neutral 𝑥 with
the argument 𝑦. In other words, the body of the function needs to be constructed
somehow by applying 𝑥 (a neutral function) with argument 𝑦 (a semantic value).
The neutral application constructor app has two requirements: the function and the
argument must accept the same input, and the argument must be in normal form.
To satisfy the first requirement, we lift the neutral 𝑥 using the selection 𝑠 , and for
the latter requirement we reify the argument value 𝑦. Finally, we reflect the neutral
application to produce the desired semantic value.

The implementation of the function reifyVal is similar to reflection, but performs
the dual action: producing a normal form from a semantic value. Like reification,
we implement this by type-directed translation of semantic values to normal forms.
Notice that the case of base type is trivial for both functions. This is because we
defined the interpretation of base types as normal forms (Nf’ base), and a semantic
value is already in normal form. Hence, reifyVal simply returns the semantic value,
and reflection applies ne-b on the neutral to construct a normal form.

6.3 NbE for Sums and Empty Type
Let us suppose that we interpret 0 as ⟦ 0 ⟧ = 0’. Now consider extending the imple-
mentation of reflection for the following case:
reflect {0} y = ??

How should we handle this case? The types tell us that we need to construct a
semantic value of the type ⊥ (recollect the definition of 0’). Since ⊥ is an empty type,
this is an impossible task! A similar problem arises for sums when we interpret them
as ⟦ a + b ⟧ = ⟦ a ⟧ +’ ⟦ b ⟧. Reflection requires us to make a choice over a returning
a semantic value of ⟦ a1 ⟧ or ⟦ a2 ⟧. Which is the right choice? Unfortunately, we
cannot make a decision with the given information since it could be either of the
cases.
We cannot construct the impossible or decide over the component of a sum to

reflect, hence we will simply build up a tree of decisions that we do not wish to make.
A decision tree is defined inductively by the following data type:
data Tree (i : Ty) (P : Pre) : Set where
leaf : Sem i P → Tree i P
dead : Ne i 0 → Tree i P
branch : Ne i (a + b)→ Tree (i ∗ a) P → Tree (i ∗ b) P → Tree i P

A leaf in a decision tree can be leaf, in which case it contains a semantic value in
𝑃 . Alternatively, a leaf can also be dead, in which case it contains a neutral which
returns 0. A branch of the tree is constructed by branch, and represents the choice
over a neutral form which returns a coproduct.

Intuitively, a tree represents a suspended computation for a value in the interpreta-
tion 𝑃 . For example, Tree i 0’ represents a suspended computation for a value in Sem

Exponential Elimination for Bicartesian Closed Categorical Combinators

135

i 0’—which is ⊥. Since values of this type are impossible, all the leaves of such a tree
must be dead. Similarly, a tree Tree 𝑖 ⟦ a + b ⟧ represents a suspended computation
for a value of type Sem i ⟦ a + b ⟧—which is a sum of Sem i ⟦ a ⟧ and Sem i ⟦ b ⟧.

Trees define a monad Tree’ on presheaves as follows.
Tree’ : Pre→ Pre
(Tree’ A) .In i = Tree i A
(Tree’ a) .lift = liftTree

The function liftTree is defined by induction on the tree. The standard monadic
operations return,map and join are defined by the following natural transformations:
return : ∀ {P}→ P ↠ Tree’ P
join : ∀ {P}→ Tree’ (Tree’ P)↠ Tree’ P
map : ∀ {P Q} → (P ↠ Q) → Tree’ P ↠ Tree’ Q

The natural transformation return is defined as leaf, while join and map can be
defined by straight-forward induction on the tree. The monadic structure of trees
are precisely the reason they allow us to represent suspended computation.

With the tree monad, we can now complete the interpretation of types 0 and + as
follows.
⟦ 0 ⟧ = Tree’ 0’
⟦ a + b ⟧ = Tree’ (⟦ a ⟧ +’ ⟦ b ⟧)
By interpreting the empty and sum types in the Tree’ monad, we are able to handle
the problematic cases of reflection by returning a value in the monad, as follows.
reflect {0} x = dead x
reflect {a + b} x = branch x

(leaf (inj1 (reflect {a} (snd (sel iden)))))
(leaf (inj2 (reflect {b} (snd (sel iden)))))

In addition to general monadic operations, the monad Tree’ also supports the
following special “run” operations:
runTree : Tree’ ⟦ a ⟧↠ ⟦ a ⟧
runTreeNf : Tree’ (Nf’ a)↠ Nf’ a

These natural transformations allow us to run a monadic value to produce a regular
semantic value, and are required to implement eval and reifyVal. The implementation
of these natural transformations is mostly mechanical: runTreeNf can be defined by
induction on the tree, and runTree can be defined by induction on the type 𝑎 using
an “applicative functor” map Tree c ⟦ a ⇒ b ⟧ → Tree c ⟦ a ⟧ → Tree c ⟦ b ⟧ for the
exponential case.

The remaining cases of evaluation are implemented as follows.
eval inl x = return (inj1 x)
eval inr x = return (inj2 x)
eval {0} {b} init x = runTree {b} (map cast x)
eval {a + b} {c} (match f g) x = runTree {c} (map match’ x)
where

Modular Normalization with Types

136

match’ : (⟦ a ⟧ +’ ⟦ b ⟧)↠ ⟦ c ⟧
match’ (inj1 y) = eval f y
match’ (inj2 y) = eval g y

For the case of inl, we have a semantic value 𝑥 in the interpretation ⟦ a ⟧, and we
need a monadic value Tree’ (⟦ 𝑎 ⟧ +’ ⟦ 𝑏 ⟧). To achieve this, we simply return the
value in the monad by applying the injection inj1. The case of inr is very similar.

For the case of init, we have a value 𝑥 in the interpretation Tree’ 0’, and we need a
value in ⟦𝑏 ⟧. Since 𝑥 is a tree, we can map over it using a function cast : 0’↠ ⟦𝑏 ⟧ to
get a value in Tree’ ⟦ b ⟧. The resulting tree can then be run using runTree to return
the desired result in ⟦ 𝑏 ⟧. The function cast has a trivial implementation with an
empty body since a value in the interpretation by 0’ has type ⊥. The implementation
of match is also similar, and we use a natural transformation match’ instead of cast
to map over 𝑥 .
The implementation of reification for the remaining fragment resembles evalua-

tion:
reifyVal {0} x = runTreeNf (map cast x)
reifyVal {a + b} x = runTreeNf (map matchNf x)
where
matchNf : (⟦ a ⟧ +’ ⟦ b ⟧)↠ Nf’ (a + b)
matchNf (inj1 y) = left (reifyVal y)
matchNf (inj2 y) = right (reifyVal y)

We use the natural transformation runTreeNf instead of runTree andmatchNf instead
of match.

7 CORRECTNESS OF NORMAL FORMS
A normal form is correct if it is convertible to the original term when quoted. The
construction of the proof for this theorem is strikingly similar to the implementation
of normalization. Although the details of the proof are equally interesting, we will
only discuss the required definitions and sketch the proof of the main theorems to
keep this section concise. We encourage the curious reader to see the implementation
of the full proof for further details (see A.1 for link). We will prove the correctness of
normalization by showing that evaluation and reification are correct. To enable the
definition of correctness for these functions, we must first relate terms and semantic
values using logical relations.

7.1 Kripke Logical Relations
We will prove the correctness theorem using Kripke logical relations à la Coquand
[11]. In this section, we define these logical relations.

Definition 7.1 (Logical relation R). A relation R between terms and semantic values,
indexed by a type 𝑏, is defined by induction on 𝑏:
R : {b a : Ty} → BCC a b → Sem a ⟦ b ⟧ → Set
R {1} t v = ⊤
R {base} t v = t ≈ q v

Exponential Elimination for Bicartesian Closed Categorical Combinators

137

R {b1 ∗ b2} t v = R (exl • t) (proj1 v) × R (exr • t) (proj2 v)
R {b1 ⇒ b2} t v = ∀ {c t’ x}→ (s : Sel c _)
→ R t’ x → R (apply • pair (liftBCC s t) t’) (v s x)

R {0} t v = R0 t v
R {b + c} t v = R+ t v

Intuitively, the relation R establishes a notion of equivalence between terms and
semantic values, but we will say related instead of equivalent to be pedantic. For
example, for the case of products, it states that composing the combinator exl with a
term is related to applying the projection proj1 on a value—and similarly for exr and
proj2. In the unit case, it states that terms and values are trivially related. For base
types, it states that terms must be convertible to the quotation of values, since values
are normal forms by definition of ⟦_⟧. For the case of exponentials, the definition
states that 𝑡 , which returns an exponential, is related to a functional value 𝑣 , if for all
related “arguments” 𝑡 ′ and 𝑥 , the resulting values of the application are related. As
usual, since 𝑣 is a function generalized over selections, the relation also states that it
must hold for all appropriate selections.
For the case of empty and sum types, we need a relation between terms and

trees—which is defined by Rt as follows.

Definition 7.2 (Logical relation Rt). A relation Rt between terms and trees, indexed
by another relation 𝑅𝑙 between terms and values in the leaves, is defined by induction
on the tree:
Rt : {B’ : Pre} → (Rl : ∀ {a1} → BCC a1 b → Sem a1 B’ → Set)
→ BCC a b → Tree a B’ → Set

Rt Rl t (leaf a) = Rl t a
Rt Rl t (dead x) = t ≈ init • qNe x
Rt Rl t (branch x v1 v2) = ∃2 λ t1 t2
→ (Rt Rl t1 v1) × (Rt Rl t2 v2) × (t ≈ case’ (qNe x) t1 t2)

Intuitively, the relation Rt states that a term is related to a tree if the term is related
to the values in the leaves. The key idea in the definition of Rt for the leaf case is to
parameterize the definition by a relation 𝑅𝑙 between terms and leaf values. Note that
the relation R cannot be used here (instead of a parameterized relation 𝑅𝑙) since its
type is more specific than the relation needed for leaves. For the case of dead leaves
with a neutral returning 0, the definition states that the 𝑡 must be convertible to
elimination of 0 using init. In the branch case, it states the inductive step: 𝑡 is related
to a decision branch in the tree, if 𝑡 is convertible to a decision over the neutral 𝑥
(implemented by case’) for some 𝑡1 and 𝑡2 related to subtrees 𝑣1 and 𝑣2.

Using the relation Rt, we can now define the remaining relations for the empty
and sum types as follows.

Definition 7.3 (Logical relations R0 and R+). Logical relations R0 and R+ are defined
as special cases of Rt using the below defined relations Rl0 and Rl+ respectively:
Rl0 : BCC a 0→ Sem a 0’ → Set
Rl0 _ ()

Modular Normalization with Types

138

R0 : BCC a 0→ Tree a 0’ → Set
R0 t v = Rt Rl0 t v

Rl+ : BCC a (b + c)→ Sem a (⟦ b ⟧ +’ ⟦ c ⟧) → Set
Rl+ t (inj1 x) = ∃ λ t’ → R t’ x × (inl • t’ ≈ t)
Rl+ t (inj2 y) = ∃ λ t’ → R t’ y × (inr • t’ ≈ t)

R+ : BCC a (b + c) → Tree a (⟦ b ⟧ +’ ⟦ c ⟧) → Set
R+ t c = Rt Rl+ t c

The relation Rl0 is simply a type cast since a value of type Sem a 0’ does not exist.
On the other hand, the relation Rl+, states that 𝑡 is related to an injection inj1 x, if 𝑡
is convertible to inl • 𝑡 ′ for some 𝑡 ′ related to 𝑥—and similarly for inj2 and inr.

7.2 Proof of Correctness
We prove the main correctness theorem (Theorem 7.3) using two intermediate the-
orems, namely the fundamental theorem of logical relations (Theorem 7.1) and the
correctness of reification (Theorem 7.2), and various lemmata. In all the cases, we
either perform induction on the return type of a term or on a tree. The main idea
here is that the appropriate induction triggers the definition of the relations, hence
enabling Agda to refine the proof goal for a specific case.

Lemma 7.1 (Invariance under conversion). If a term 𝑡 is convertible to 𝑡 ′ and 𝑡 ′ is
related to a semantic value 𝑣 , then 𝑡 is related to 𝑣 .
invariance : {t t’ : BCC a b} {v : Sem a ⟦ b ⟧}→ t ≈ t’ → R t’ v → R t v

Proof. By induction on the return type of 𝑡 and 𝑡 ′. The proof is fairly straight-
forward equational reasoning using the conversion rules (≈). The empty and sum
types can be handled by induction on the tree. □

Lemma 7.2 (Lifting preserves relations). If a term 𝑡 : BCC a b is related to a value
𝑣 : Sem a ⟦ b ⟧, then lifting the term is related to lifting the value, for any applicable
selection 𝑠 .
liftPresR : {s : Sel c a} {t : BCC a b} {v : Sem a ⟦ b ⟧}

→ R t v → R (liftBCC s t) (lift ⟦ b ⟧ s v)

Proof. By induction on the return type of 𝑡 . As in the previous lemma, the empty
and sum types can be handled by induction on the tree. □

Definition 7.4 (Fundamental theorem). If a term 𝑡 ′ is related to a semantic value 𝑣 ,
then the composition 𝑡 • 𝑡 ′ is related to the evaluation of 𝑡 with the input 𝑣 , for all
terms 𝑡 . That is, the fundamental theorem holds if Fund 𝑡 (defined below) holds for
all 𝑡 .
Fund : (t : BCC a b)→ Set
Fund {a} {b} t = {c : Ty} {t’ : BCC c a} {v : Sem c ⟦ a ⟧}

→ R t’ v → R (t • t’) (eval t v)

Exponential Elimination for Bicartesian Closed Categorical Combinators

139

Theorem 7.1 (Correctness of evaluation). The fundamental theorem holds, or equiv-
alently, evaluation is correct.

correctEval : (t : BCC a b)→ Fund t

Proof. By induction on the term 𝑡 . Most cases are proved by the induction hy-
pothesis and some equational reasoning . To enable equational reasoning, we must
use the invariance lemma (Lemma 7.1). For the case of curry, the key step is to make
use of the 𝛽 rule for functions (from Section 2).

For the sum and empty types, recall that evaluation uses the natural transformation
runTree : Tree’ ⟦ a ⟧↠ ⟦ a ⟧. Hence, to prove correctness of evaluation for these
cases, we need a lemma correctRunTree : Rt R t v → R t v—which can be proved by
induction on the return type of 𝑡 . The proof of this lemma also requires us to prove
correctness of all the natural transformations used by runTree, which can be achieved
in similar fashion to correctRunTree. Note that we must use the lifting preservation
lemma (Lemma 7.2), wherever lifting is involved, for example, in the curry case. □

Lemma 7.3 (Correctness of reflect and reifyVal). i) The quotation of a neutral form
𝑛 is related to its reflection. ii) If a term 𝑡 is related to a value 𝑣 , then t must be
convertible to the normal form which results from the quotation of reification of 𝑣 .

correctReflect : {n : Ne a b} → R (qNe n) (reflect n)
correctReifyVal : {t : BCC a b} {v : Sem a ⟦ b ⟧}→ R t v → t ≈ q (reifyVal v)

Proof. Implementedmutually by induction on the return type of the neutral / term
and using the invariance lemma (Lemma 7.1) to do equational reasoning. Appropriate
eta conversion rules are needed for products, exponentials and sums. □

Theorem 7.2 (Correctness of reification). The fundamental theorem proves that 𝑡 is
convertible to quotation of the value obtained by evaluating and reifying t.

correctReify : {t : BCC a b}→ (Fund t) → t ≈ q (reify (eval t))

Proof. By induction on the return type of term 𝑡 . This theorem follows from
Lemma 7.3 and the other lemmata discussed above. □

Theorem 7.3 (Correctness of normal forms). A term is convertible to the quota-
tion of its normal form.

Proof. Since normalization is defined as the composition of reification and eval-
uation, the correctness of normal forms follows from the correctness of reification
and evaluation:

correctNf : (t : BCC a b) → t ≈ q (norm t)
correctNf t = correctReify (correctEval t)

□

Modular Normalization with Types

140

7.3 Exponential Elimination Theorem
Using the syntactic elimination of exponentials illustrated earlier using normal forms
(Section 5.2), and the normalization procedure which converts BCC terms to normal
forms (Section 6), we finally have the following exponential elimination theorem for
BCC terms.

Theorem 7.4 (Exponential elimination). Given that 𝑎 and 𝑏 are first-order types,
every term 𝑓 : BCC 𝑎 𝑏 can be converted to an equivalent term 𝑓 ′ : DBC 𝑎 𝑏 which
does not use any exponentials.

Proof. From the normalization function norm implemented in Section 6, and the
correctness of normal forms by Theorem 7.3, we know that there exists a normal
form 𝑛 : Nf 𝑎 𝑏 resulting from the application norm 𝑓 such that 𝑓 ≈ q 𝑛. Since 𝑎 and
𝑏 are first-order types, we also have a DBC term qD 𝑛 : DBC 𝑎 𝑏, which does not
use exponentials by construction. Additionally, since the function qD is a restriction
map of the function q, qD 𝑛 must be equivalent to q 𝑛, and hence to 𝑓 . This can be
shown by proving that the embedding of the DBC term qD 𝑛 into BCC is convertible
to q 𝑛, and hence to 𝑓 . Thus we have an equivalent DBC term 𝑓 ′ = qD 𝑛. □

8 SIMPLICITY, AN APPLICATION
Simplicity is a typed combinator language for programming smart contracts in
blockchain applications [24]. It was designed as an alternative to Bitcoin Script,
especially to enable static analysis and estimation of execution costs. The original
design of Simplicity only allows unit, product and sum types. It does not allow
exponentials, the empty type or base types. The simple nature of these types enables
calculation of upper bounds on the time and memory requirements of executing a
Simplicity program in an appropriate execution model. For example, the bit-size of a
value is computed using its type as follows.
size 1 = 0
size (t1 ∗ t2) = size t2 ‘+ size t2
size (t1 + t2) = 1 ‘+ max (size t1) (size t2)

Note that the operator ‘+ is simply addition for natural numbers renamed to avoid
name clash with the constructor +. The additional bit is need in the sum case to
represent the appropriate injection.

Despite Simplicity’s ability to express any finite computation between the allowed
types, its low-level nature makes it cumbersome to actually write programs since
it lacks common programming abstractions such as functions and loops. Even as a
compilation target, Simplicity is too low-level. For example, compiling functional
programs to Simplicity burdens the compiler with the task of defunctionalization
since Simplicity does not have a corresponding notion of functions. To solve this
issue, Valliappan et al. [27] note that Simplicity can be modeled in (distributive)
bicartesian categories, and propose extending Simplicity with exponentials, and
hence to bicartesian closed categories without the empty type.
Although extending Simplicity with exponentials makes it more expressive, it

complicates matters for static analysis. For example, the extension of the size function
is already a matter of concern:

Exponential Elimination for Bicartesian Closed Categorical Combinators

141

size (t1 ⇒ t2) = size t2 ^ size t1

Valliappan et al. [27] avoid this problem by extending the bit machine with the
ability to implement closures, but the problem of computing an upper bound on
execution time and memory consumption remains open. Exponential elimination
provides a solution for this: Simplicity programs with exponentials can be compiled
by eliminating exponentials to programs without exponentials, hence providing
a more expressive higher-order target language—while also retaining the original
properties of static analysis.
Since Simplicity resembles BCC and DBC combinators, they can be translated to

BCC, and from DBC in a straight-forward manner [27]:
SimplToBCC : Simpl a b → BCC a b
DBCToSimpl : DBC a b → Simpl a b

Exponential elimination bridges the gap between BCC and DBC terms:
elimExp : firstOrd a → firstOrd b → BCC a b → DBC a b
elimExp p q t = qD p q (norm t)

Thus, we can implement an exponential elimination algorithm for Simplicity pro-
grams:
elimExpS : firstOrd a → firstOrd b → Simpl a b → Simpl a b
elimExpS p q t = DBCToSimpl (elimExp p q (SimplToBCC t))

The difference between the input and output programs is of course that the input
may have exponentials, but the output will not. The requirements that the input
and output of the entire program be first-order types is a harmless one since such
programs must have an observable input and output anyway.
Note that we have overlooked the empty type and the combinator init in the

translation of DBCToSimpl here. However, this can be mitigated easily by adding an
additional predicate nonEmpty : Ty → Set to discharge this case —as in Section 5.2,
thanks to the weak subformula property!

Although our work shows that it is possible to eliminate exponentials from Simplic-
ity programs, the implementation provided here might not be the most practical one.
Normal forms are in 𝜂-expanded form, which means that the generated programs
may be much larger than necessary, hence leading to code explosion. Moreover, the
translation to BCC and from DBC is also an unnecessary overhead. It may be possible
to tame code explosion by normalizing without 𝜂 expansion [17]. The latter problem,
on the other hand, can be solved easily by implementing exponential elimination
directly on Simplicity programs. We leave these improvements as suggestions for
future work.

9 RELATEDWORK
Selections resemble weakenings (also called order preserving embeddings) in lambda
calculus [4]. Weakenings are defined for typing contexts such that a weakening Γ ⊑ Δ
selects a “subcontext” Δ from the context Γ [19]. Selections, on the other hand, are
simply a subset of BCC terms that select components of the input. Conceptually,
selections are the BCC-equivalent of weakenings and they have properties (discussed

Modular Normalization with Types

142

in Section 4) similar to weakenings. Most importantly, selections unify the notion of
weakenings and variables—since they are used in neutrals (as “variables”) and for
lifting (as “weakenings”).

Altenkirch et al. [3] implement NbE to solve the decision problem for STLC with
all simple types except the empty type (λ⇒1∗+). Balat et al. [7] solve the extensional
normalization problem using NbE for the STLC including the empty type (λ⇒1∗+0).
Abel and Sattler [2] provide an account of NbE for λ⇒1∗+0 using decision trees—the
techniques of which they go on to use for more advanced calculi. They in turn
attribute the idea of decision trees for normalizing sum types to Altenkirch and
Uustalu [5]. Our interpretation model is based on that of Abel and Sattler [2] and
the generated normal forms are not unique—caused by commuting case conversions
and the overlap between selections and projections. The primary difference between
earlier efforts and our work is that we implement NbE for a combinator language.
Altenkirch and Uustalu [5] also prove correctness of normal forms using logical

relations, but only for closed lambda terms. Our logical relations have a much more
general applicability since they are indexed by the input (or equivalently by the typing
context). Moreover, we prove correctness for interpreting sums using decision trees
by the means of logical relations generalized over arbitrary presheaf interpretations.
Since the decision tree monad Tree’ is a strong monad [21], it should be possible to
further extend this proof technique to normalization of calculi with computational
effects [15] [2].

10 FINAL REMARKS
We have shown that BCC terms of first-order types can be normalized to terms in a
sub-language without exponentials based on distributive bicartesian categories. To
this extent, we have implemented normalization using normalization by evaluation,
and shown that normal forms are convertible to the original term in the equational
theory of BCCs. Moreover, we have also shown the applicability of our technique to
erase exponentials from a combinator language called Simplicity. Our work enables
a closure-free implementation of BCC combinators and answers previously open
questions about the elimination of exponentials.
As noted earlier, the normal forms of BCC combinators presented here are not

normal forms of the equational theory specified by the conversion relation ≈. This
is because the syntax of normal forms does not enforce normal forms of equivalent
terms to be unique. For example, the normal forms ne-b (sel (drop endb)) and
ne-b (fst (sel (keep endb))) are syntactically different, but inter-convertible when
quoted. Hence, the normalization procedure does not derive the conversion relation≈,
and cannot be used to decide it. Instead, our notion of normal forms is characterized
by the weak subformula property, and aimed at the eliminating intermediate values
by restricting the unruly composition which allows introduction and elimination of
arbitrary values.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments on earlier drafts of this paper.
We thank Andreas Abel for suggesting NbE and for the many discussions about
implementing and proving the correctness of NbE. The first author took inspiration

Exponential Elimination for Bicartesian Closed Categorical Combinators

143

for this work from Andreas’ lecture notes on NbE for intuitionistic propositional
logic at the Initial Types Club. We would also like to thank Thierry Coquand, Fabian
Ruch and Sandro Stucki for the insightful discussions on the topic of exponential
elimination. This work was funded by the Swedish Foundation for Strategic Research
(SSF) under the projects Octopi (Ref. RIT17-0023) and WebSec (Ref. RIT17-0011), as
well as the Swedish research agency Vetenskapsrådet.

REFERENCES
[1] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. 1991. Explicit substitutions. Journal of

functional programming 1, 4 (1991), 375–416.
[2] Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for Call-by-Push-Value and

Polarized Lambda-Calculus. arXiv preprint arXiv:1902.06097 (2019).
[3] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. 2001. Normalization by evalu-

ation for typed lambda calculus with coproducts. In Proceedings 16th Annual IEEE Symposium on
Logic in Computer Science. IEEE, 303–310.

[4] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical reconstruction of a
reduction free normalization proof. In International Conference on Category Theory and Computer
Science. Springer, 182–199.

[5] Thorsten Altenkirch and Tarmo Uustalu. 2004. Normalization by evaluation for 𝜆→ 2. In International
Symposium on Functional and Logic Programming. Springer, 260–275.

[6] Steve Awodey. 2010. Category theory. Oxford University Press.
[7] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. 2004. Extensional normalisation and type-

directed partial evaluation for typed lambda calculus with sums. In POPL, Vol. 4. 49.
[8] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalization by evaluation. In

Prospects for Hardware Foundations. Springer, 117–137.
[9] Ulrich Berger and Helmut Schwichtenberg. 1991. An inverse of the evaluation functional for typed

lambda-calculus. In [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
IEEE, 203–211.

[10] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda–a functional language with
dependent types. In International Conference on Theorem Proving in Higher Order Logics. Springer,
73–78.

[11] Catarina Coquand. 1993. From semantics to rules: A machine assisted analysis. In International
Workshop on Computer Science Logic. Springer, 91–105.

[12] Guy Cousineau, P-L Curien, and Michel Mauny. 1987. The categorical abstract machine. Science of
computer programming 8, 2 (1987), 173–202.

[13] P-L Curien. 1986. Categorical combinators. Information and Control 69, 1-3 (1986), 188–254.
[14] Conal Elliott. 2017. Compiling to categories. Proceedings of the ACM on Programming Languages 1,

ICFP (2017), 27.
[15] Andrzej Filinski. 2001. Normalization by evaluation for the computational lambda-calculus. In

International Conference on Typed Lambda Calculi and Applications. Springer, 151–165.
[16] Yves Lafont. 1988. The linear abstract machine. Theoretical computer science 59, 1-2 (1988), 157–180.
[17] Sam Lindley. 2005. Normalisation by evaluation in the compilation of typed functional programming

languages. (2005).
[18] Saunders MacLane and Ieke Moerdijk. 1992. Sheaves in geometry and logic: a first introduction to

topos theory. (1992).
[19] Conor McBride. 2018. Everybody’s got to be somewhere. Electronic Proceedings in Theoretical

Computer Science 275 (2018), 53–69.
[20] John C Mitchell and Eugenio Moggi. 1991. Kripke-style models for typed lambda calculus. Annals of

Pure and Applied Logic 51, 1-2 (1991), 99–124.
[21] Eugenio Moggi. 1991. Notions of computation and monads. Information and computation 93, 1 (1991),

55–92.
[22] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Everything old is new again:

quoted domain-specific languages. In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial

Modular Normalization with Types

144

Evaluation and Program Manipulation. ACM, 25–36.
[23] Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Vol. 32.

Citeseer.
[24] Russell O’Connor. 2017. Simplicity: A new language for blockchains. In Proceedings of the 2017

Workshop on Programming Languages and Analysis for Security. ACM, 107–120.
[25] John C Reynolds. 1998. Definitional interpreters for higher-order programming languages. Higher-

order and symbolic computation 11, 4 (1998), 363–397.
[26] Anne Sjerp Troelstra and Helmut Schwichtenberg. 2000. Basic proof theory. Number 43. Cambridge

University Press.
[27] Nachiappan Valliappan, Solène Mirliaz, Elisabet Lobo Vesga, and Alejandro Russo. 2018. Towards

Adding Variety to Simplicity. In International Symposium on Leveraging Applications of Formal
Methods. Springer, 414–431.

A APPENDIX
A.1 Agda Implementation
The complete Agda implementation of the normalization procedure and mechaniza-
tion of the proofs can be found at the URL https://github.com/nachivpn/expelim

A.2 Implementation of distributivity in BCC

Distr : BCC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))
Distr = apply • (pair
(match
(curry (inl • pair exr exl))
(curry (inr • pair exr exl)) • exr)

exl)

Exponential Elimination for Bicartesian Closed Categorical Combinators

145

	Abstract
	Acknowledgments
	Overview
	Introduction
	Why Normalization Matters
	The Sorcery of Normalization by Evaluation
	Fistful of Problems and This Thesis
	Fitch-Style Modal Calculi
	Embedded Domain-Specific Languages
	Language-Based Security
	Categorical Combinators

	Statement of contributions
	Normalization for Fitch-Style Modal Calculi
	Practical Normalization by Evaluation for EDSLs
	Simple Noninterference by Normalization
	Exponential Elimination for Bicartesian Closed Categorical Combinators

	Bibliography

	Papers
	Normalization for Fitch-Style Modal Calculi
	Practical Normalization by Evaluation for EDSLs
	Simple Noninterference by Normalization
	Exponential Elimination for Bicartesian Closed Categorical Combinators

