Normalization by Evaluation with Free Extensions

Nathan Corbyn?, Ohad Kammar2, Sam Lindley2, Nachi Valliappan3, Jeremy Yallop#4

10xford University, 2 University of Edinburgh, 3 Chalmers University of Technology, 4 Cambridge University

TyDe, 11 Sep ’22, Ljubljana

RESEARCH-ARTICLE o @

Practical normalization by evaluation for EDSLs

Authors: Nachiappan Valliappan, @ Alejandro Russo, Sam Lindley Authors Info & Claims

Haskell 2021: Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell « August 2021

Practical Normalization by Evaluation for EDSLs

Nachiappan Valliappan
Chalmers University of Technology
Gothenburg, Sweden

d 11CI1 5CL Ul 1CalulcCo SUlll dads sullls,

ceptions, and state—and in particular—a detailed and
extensible account of their interaction.

Practical extensions of standard NbE techniques to im-
plement a richer set of domain-specific equations, and
variations that control unnecessary code expansion.
Examples showing that NbE provides a principled al-
ternative to ad hoc techniques that combine deep and
shallow embedding to implement fusion for functions,
loops and arrays in an eDSL.

dalldys, CX

The complete Haskell source code and examples in this
paper can be found in the accompanying material available
at https://github.com/nachivpn/nbe-edsl.

2 Normalizing EDSL Programs

This section showcases our implementation with examples of
normalizing eDSL programs using NbE. We begin with stan-

Alejandro Russo
Chalmers University of Technology
Gothenburg, Sweden

Sam Lindley
The University of Edinburgh
Edinburgh, United Kingdom

power = lampAn — lam$Ax — recn (J x) 1
where f x = lam$A_ — lam$ Aacc — (x * acc)

This implementation corresponds to the power; variant,
and is implemented using expression combinators: lam ::
(Exp a — Exp b) — Exp (a — b) is a lambda expression
combinator and rec :: Exp Int — Exp (Int - a — a) —
Exp a — Exp ais a primitive recursion combinator such that
rec n g aisequivalentto g 1 (g 2 (...(g n a))). Although
possible, note that the type of rec is not entirely wrapped
under Exp as Exp (Int — (Int - a — a) — a — a). This
choice prevents unnecessary clutter caused by explicit func-
tion application in the expression language, and trades some
specialization power (i.e., the subsumption of some stage
separations) for a more convenient interface. We make this
choice for all primitive combinators that require multiple
arguments.

An expression of a function type can be applied using
the combinator app :: Exp (a — b) — Exp a — Exp b as

Practical Normalization by Evaluation for EDSLs

Nachiappan Valliappan Alejandro Russo Sam Lindley
Chalmers University of Technology Chalmers University of Technology The University of Edinburgh
Gothenburg, Sweden Gothenburg, Sweden Edinburgh, United Kingdom

-

-

“Examples showing that NbE provides a principled alternative to
ad hoc techniques that combine deep and shallow embedding to
implement fusion for functions, loops and arrays in an eDSL”

~

J

hub.com/nachivpn/nbe-edsl. specialization power (i.e., the subsumption of sc

separations) for a more convenient interface. W
choice for all nrimitive combinators that

Practical Normalization by Evaluation for EDSLs

Nachiappan Valliappan Alejandro Russo Sam Lindley
Chalmers University of Technology Chalmers University of Technology The University of Edinburgh
Gothenburg, Sweden Gothenburg, Sweden Edinburgh, United Kingdom

-

-

‘“Examples showing that NbE provides a principled alternative to
ad hoc techniques that combine deep and shallow embedding to
implement fusion for functions, loops and arrays in an eDSL”

~

J

hub.com/nachivpn/nbe-edsl. specialization power (i.e., the subsumption of sc

separations) for a more convenient interface. W
choice for all nrimitive combinators that

Practical Normalization by Evaluation for EDSLs

Nachiappan Valliappan Alejandro Russo Sam Lindley
Chalmers University of Technology Chalmers University of Technology The University of Edinburgh
Gothenburg, Sweden Gothenburg, Sweden Edinburgh, United Kingdom

-

-

~
“Examples showing that NbE provides a principled alternative to

ad hoc techniques that combine deep and shallow embedding to
implement fusion for functions, loops and arrays in an eDSL”

J

hub.com/nachivpn/nbe-edsl. specialization power (i.e., the subsumption of sc

separations) for a more convenient interface. W
choice for all nrimitive combinators that

Reviewer 2

Reviewer 2 strikes again!

Reviewer 2 strikes again!

“just a huge long list of examples”

Reviewer 2 strikes again!

“feels like there's an underlying technique trying to
get out, but I'm not sure what it is. Without seeing
the technique it's also hard to criticise the technique”

...did get published in Haskell ’21.

4 I
Types a,b ::= a — b | Nat

Terms t,u =z | Ax.t |tu | k| t*xu
N i

Ar.(2%3) % x Ax.(Ay.2 xy)(x * 3)

CERIEY:
l !
[FREX(N, Var)]
|

N = (N, %, 1)

Y AVERIEX" Ax.(Ay.2 xy)(x * 3)

| FREX(

Ax.(2%3)* T A (Ay.2 x y)(x * 3)
| |
[FREX(N , Ne Nat)]
| Keyidea!

AL.0 x

Neutrals and normal forms

Neutrals n ::= z | nm

Normal forms m ::= Ax.m | k*xng*...*xn;

{) /ﬁ (A
Requires some ingenuity

Ax.(2 % 3) x x isn’t normal, but Az.6 * x is.

M= (M,®,1)

Ax.(Ay.a Q@ y)(r ® b)

4 I
Types a,b := ... | M
Terms t,u = ... |k |t®u

N i

Ar.(a®b) @@
l l

| FREX(M,Ne M) |

Ax.(a ®b) ®x

l

/

_

Types a, b ::

Terms t,u ::=

1S
JE|t®u|tdu

%

[FREX(S,Ne S)]

l

S=(5®,1,3,0)

Normalization by Evaluation (NbE)

eval : Tm a — [a]

quote : [[a] — Nf a

norm : ITm a — Nf a

norm = quote o eval

NDE interpretation of types

[Nat] = FREX(N,Ne Nat)
la = b] = [a] — [0]

{ AS us@q

Frex interface

FREX(A, X) is a Y-algebra)))
Requires some ingenuity]

ig: A— FREX(A, X)
ix : X = |FREX(A, X)|

For h: A— B,e: X — |B] mgwrmalforms]

3! matchp, : FREX(A, X) — B s.t.

matchpeotqa =h |matchyloix =e

NDbE proofs using Frex

t ~norm t, for ¢t : Tm Nat

for FREE!™

There’s more and lots to be done

NDE with Free Extensions:
« Information-flow control extension

- WIP: Formal account of the recipe
« TODO: Extend to multi-sorted algebras

NDE as a Free Extension: | chack out Nathan’s poster at SRC }
« Ocaml implementation

« Free Extensions of Categories, CCCs, STLC

Calling NbE fans

Normalization for Fitch-style Modal Calculi

Who Nachiappan Valliappan, Fabian Ruch, Carlos Tomé Cortifias

Track ICFP 2022 ICFP Papers and Events

O This program is tentative and subject to change.

When Tue 13 Sep 2022 11:10 - 11:30 at Linhart - Logic Chair(s): llya Sergey

DISTINGUISHED PAPER

In a Nutshell

Normalization by Evaluation for primitive
types by leveraging their algebraic structure.

TA] = FREX(A, Ne A)

Extended abstract: nachivpn.me/nwf.pdf

https://nachivpn.me/nwf.pdf

EOM

