
Towards Adding Variety to Simplicity

Nachiappan Valliappan1, Solène Mirliaz2, Elisabet Lobo Vesga1, and Alejandro

Russo1

1 Chalmers University of Technology
2 ENS Rennes

Abstract. Simplicity is a Turing-incomplete typed combinator language for smart

contracts with a formal semantics. The design of Simplicity makes it possible

to statically estimate the resources (e.g., memory) required to execute contracts.

Such a feature is highly relevant in blockchain applications to efficiently deter-

mine fees to run smart contracts. Despite being Turing incomplete, the language

is capable of expressing non-trivial contracts. Often, Simplicity programs contain

lots of code repetition that could otherwise be avoided if it had common program-

ming languages features, such as local definitions, functions, and bounded loops.

In this work, we provide the foundations to make Simplicity a richer language. To

achieve that, we connect Simplicity’s primitives with a categorical model. By do-

ing so, we lift the language to a more abstract representation that will allow us to

extend it by leveraging category theory models for computations. This methodol-

ogy facilitates the addition of local definitions, functions, and bounded loops. We

provide an implementation of Simplicity and its virtual machine in the functional

programming language Haskell.

Keywords: Simplicity · Category Theory · Haskell · Functional Programming ·
Blockchain · Smart contracts.

1 Introduction

Blockchain technology has emerged as a revolutionary approach for decentralized peer-

to-peer networks. The most known deployment of this technology is Bitcoin [5]. Since

its launch in 2009, Bitcoin has spawned a number of alternative crypto-currencies using

different optimizations and tweaks (e.g., Litecoin, Ripple, EOS [9,10]). Among these,

Ethereum [12] stands out for its implementation of programmable transactions in the

form of smart contracts. Given that smart contracts are programs, they need to be ex-

ecuted in order to get a result but without compromising the availability of the whole

network. To achieve that, Ethereum assigns a consumable resource, called gas, to the

execution of contracts which is paid by users to the block miners in ether—Ethereum’s

currency [12]. Ethereum uses a Turing-complete computational model, which makes it

challenging to predict the gas required to run contracts.

Simplicity [6,7] is a language for smart contracts with a formal semantics that en-

ables “fast” (linear time) static analysis of resource consumption. The operational se-

mantics of Simplicity instructions is given in an abstract machine named the Simplicity

Bit Machine (SBM). Despite that the language is capable of expressing non-trivial con-

tracts, it can be very cumbersome to actually write one using its minimal constructs.

2 N. Valliappan et al.

Primitive Description

iden : A ⊢ A It is the identity function which simply returns its input.

unit : A ⊢ 1 It is a unit function which always returns a value of the unit

type.

comp f g : A ⊢ C It composes two simplicity functions f : A ⊢ B and g :
B ⊢ C.

pair s t : A ⊢ (B × C) It constructs a product using s : A ⊢ B and t : A ⊢ C.

take t : A×B ⊢ C It applies t : A ⊢ C to the first component of a product.

drop t : A×B ⊢ C It applies t : B ⊢ C to the second component of a product.

injl t : A ⊢ B + C It constructs a coproduct using t : A ⊢ B.

injr t : A ⊢ B + C It constructs a coproduct using t : A ⊢ C.

case s t : (A+B)×C ⊢ D It is used to pattern match over the coproduct (A + B) in

the input. If the coproduct contains a value of type A, then

s : A×C ⊢ D is executed, else if the coproduct contains a

value of type B, then t : B ×C ⊢ D is executed.

Fig. 1: Simplicity’s basic functions and combinators

Moreover, the lack of common programming languages features such as local defini-

tions, functions, and loops forces programs to contain lots of code repetition that could

otherwise be avoided.

In this work, we show how to interpret Simplicity as a mathematical model from

category theory. Once in the territory of category theory, we borrow its results on mod-

eling different computational aspects to extend Simplicity and its virtual machine with

functions. By adding functions, Simplicity contracts can account for local definitions as

well as bounded loops. We also provide an implementation of Simplicity, the SBM, as

well as our extensions in the functional programming language Haskell 3.

2 Background

Simplicity can be considered a typed functional programming language, where the ex-

pressions are essentially built from applying the functions in the language. It therefore

consists of base functions and function combinators (or combinators for short). Com-

binators are dedicated to build more complex functions from simpler ones in a compo-

sitional manner. Simplicity has three types: the unit type, written 1, the product type,

written A×B, and the coproduct type, written A+B. The entire Simplicity’s interface

is shown in Figure 1, where f : i ⊢ o denotes that the input and output type of function

f are i and o, respectively. Simplicity’s functions are self-explanatory and therefore we

omit discussing them further.

One of the design goals for Simplicity is to enable the estimation of runtime re-

sources statically when executed in a virtual machine. The analysis of runtime resources

requires a formal model of the runtime as well as an operational semantics of Simplic-

ity’s basic functions and combinators. Observe that the computational power of the

3 Our implementation and accompanying material are available at

https://bitbucket.org/russo/isola-additional-material/overview.

https://bitbucket.org/russo/isola-additional-material/overview

Towards Adding Variety to Simplicity 3

language is Turing incomplete (e.g., it lacks loops), which facilitates the estimation of

resource consumption—we refer the interested reader to [7] for details.

2.1 The Bit Machine

The Simplicity Bit Machine (SBM) is used to execute Simplicity programs and it con-

sists on an state composed of two stacks of data frames: the read stack and the write

stack. A frame is a list of cells, where each cell contains either 0, 1 or an undefined

value noted as ?. Each frame has also a cursor, which indicates which cell is to be writ-

ten or read. The read stack is used to provide the input of the Simplicity function and

the write stack is used to write its output. The topmost frame—also called the active

frame—contains the input (output) of the current primitive in execution. For instance,

in order to execute a Simplicity function f : A ⊢ B, the active read frame must have a

value of type A. After execution, the output value of type B can be found on the active

write frame.

Simplicity’s types have “finite size”, that is, well-typed values have a finite repre-

sentation in terms of cells. In other words, it is always possible to compute the number

of cells required by the input and output of well-typed functions. That is, in terms

of number of bits, sizeOf(1) = 0 (as there is only one value), sizeOf(A + B) =
1 + max(sizeOf(A) + sizeOf(B)) (where the extra bit is used as a flag to indicate

whether the value is of type A or B), and sizeOf(A × B) = sizeOf(A) + sizeOf(B)
bits. The ability to compute the size from the types plays a crucial role in the operational

semantics of Simplicity. From now on, when referring to the size of a type, the reader

should keep in mind that we are referring to the representation of values of such a type.

The size of the input type is needed to read the exact number of cells which con-

tain the input. Moreover, the size of the output type is required to allocate the amount of

needed cells for writing the output of a Simplicty function. The following outlines show

how values of a specific type are read or written in the SBM. Note that all the reading

(writing) always happens on the active read (write) frame. Below, we briefly describe

how SBM behaves when operating with values of different types. The complete opera-

tional semantics of the SBM can be found in [7].

◮ To write a value of type 1 on the write frame, the SBM writes nothing (as only one

value exists). Similarly, to read a value of type 1, the SBM reads nothing.

◮ To write a value of type A×B, the SBM writes the value of type A followed by the

value of type B on the write frame. Instead, to read a value of A × B, the SBM first

computes the size of A and reads that many cells in order to get A. Then, it computes

the size of B and reads that many cells in order to get B.

◮ To write a value of type A + B, the SBM writes a (cell) flag bit indicating whether

the value is A (0) or B (1). After that, it skips any excess cells which may have been

allocated (keeping in mind that the value could be A or B), and then writes the available

value. This mechanism of skipping ahead is also called padding.

Since the resource allocation in the read and write stack is made using the type infor-

mation (as shown above), and given that the language is Turing incomplete, it becomes

possible to do static analysis to compute an upper bound on the runtime resources used

4 N. Valliappan et al.

by an smart contract. For example, it is possible to estimate the number of cells used by

a Simplicity program on both stacks. We refer the reader to [7] for a detailed discussion

on static analysis in Simplicity programs.

3 Categorical Semantics for Simplicity

A B

C

idA idB

idC

f

g
g ◦ f

Fig. 2: Identity and composi-

tion in a category

In this section, we establish an unforeseen con-

nection between Simplicity and a branch of math-

ematics called category theory. Such connection

will open the door to apply known results from

category theory [3] in order to systematically ex-

tend Simplicity and the SBM with new features.

We start by briefly describing a specific kind of

category: the Bi-Cartesian Categories, or BCCs

for short. Then, we show how categories can be

used to model Simplicity computations.

A category is composed of objects and mor-

phisms between these objects. A simple way to

think about it is to consider it as a graph with certain operations and satisfying certain

properties, where the vertices are the objects and the (oriented) edges the morphisms.

Category theory will often characterize the features of the categories, based on the re-

lations between objects and morphisms.

The basic features that a category must have are identity and composition.

◮ Identity For every object A in the category (i.e., every vertex in the graph), there

exists an identity morphism (edge) from A to A, noted id : A → A. Since there are

many identity morphisms, it is common to identify them by their associated objects,

e.g., id : A → A is denoted by idA. For simplicity, while presenting the construction

of some categorical features as graphs, we often omit the identity morphisms but recall

that they do exist for every object (vertex).

◮ Composition For every two morphisms (edges) f : A → B and g : B → C, there

exists a morphism (edge) g ◦ f :: A → C. Furthermore, the composition must be

associative, and the morphism id must be the identity for composition, which gives the

following equalities: f ◦ (g ◦ h) = (f ◦ g) ◦ h and that f ◦ idA = idB ◦ f = f .

To give an example of a category, let us consider three objects, namely A, B, and

C, and two morphisms f : A → B and g : B → C. If we want to place them into

a category, we must add an identity morphism for each object and a morphism for the

composition of f and g. Figure 2 shows the structure of such a category.

The rest of the section proceeds to describe the remaining features found in BCCs.

◮ Terminal object There is an object, we noted it as T , such that for any other object

A in the category, there exists precisely one morphism final : A → T (also know

as terminal morphism). Figure 3a) shows objects A and B and their corresponding

morphisms to the terminal object.

◮ Products For all objects A and B in the category, there exists the product object

A × B. Every product object comes equipped with two morphisms fst : A × B → A

Towards Adding Variety to Simplicity 5

T BA
finalA finalB

idA idB

idT

(a) Terminal object and morphisms

A×B

C

A B

〈f, g〉

fst snd

f g

(b) Products

Fig. 3: Terminal and products in BCCs

and snd : A × B → B which project out its components. Importantly, for every two

morphisms f : C → A and g : C → B, there exists an unique morphism (represented

by a dashed arrow) called factor, written 〈f, g〉 : C → A × B, which should fulfill

the following equations: f = fst ◦ 〈f, g〉 and that g = snd ◦ 〈f, g〉. These equations

capture the behavior of factor, i.e., a product element obtained from C is constructed by

building an element A with f and an element B with g. Figure 3b) introduces objects

A, B, C, morphisms f : C → A and g : C → B, and describes their relation via the

product object A×B and the factor morphism.

◮ Coproducts For all objects A and B in the category, there exists a coproduct object

A + B. Every coproduct object comes with two morphims, the injections inj
1
: A →

A + B and inj
2
: B → A + B. If we have two morphisms f : (E × A) → C and

g : (E × B) → C, then there exists a unique morphism called copair, written [f, g] :
(E × (A + B)) → C 4. This morphism fulfills the equations: f = [f, g] ◦ 〈idE , inj

1
〉

and g = [f, g] ◦ 〈idE , inj
2
〉. In other words, the copair builds an element of C by using

either f or g, depending on either it receives an element of A or B. Figure 4 introduces

objects A, B, C and E, morphisms f : E×A → C and g : E×B → C, and describes

their relation via the coproduct object A+B and the copair morphism.

A+B

A Binj
1

inj
2

(a) Coproducts as dual of

products

E × (A+B)

E ×A E ×B

C

f g[f, g]

(b) Copair

Fig. 4: Coproducts in BCCs

4 In category theory, copair is commonly used without the product with E: if f ′ : A → C and

g′ : B → C, then [f ′, g′] : A + B → C. However, using the morphism containing E will

ease the equivalence between morphisms and Simplicity terms.

6 N. Valliappan et al.

3.1 Simplicity and BCCs

The type signature of BCCs’ morphisms and Simplicity’s basic and combinator func-

tions look pretty similar. In this section, we describe how to model Simplicity functions

using BCCs. Intuitively, the idea is that a function f : A ⊢ B will be modeled by a

morphism m : A → B. In other words, Simplicity types become objects in BCCs and

functions morphisms. For instance, the function iden : A ⊢ A can be modeled by the

morphism id : A → A. The complete translation of Simplicity to BCCs is given on Fig-

ure 5, where we denote f m as the relation “the morphism m models the Simplicity

function f”.

Simplicity BCCs

iden : A ⊢ A idA : A → A

comp (s : A ⊢ B) (t : B ⊢ C) : A ⊢ C

g ◦ f : A → C

where s f : A → B

t g : B → C

unit : A ⊢ 1 final : A → T

injl (t : A ⊢ B) : A ⊢ B + C
(inj

1
: B → B + C) ◦ g : A → (B + C)

where t g : A → B

injr (t : A ⊢ C) : A ⊢ B + C
(inj

2
: C → B +C) ◦ f : A → (B + C)

where t f : A → C

case (s : A×C ⊢ D)
(t : B×C ⊢ D) : (A+B)×C ⊢ D

[f ◦ flip, g ◦ flip] ◦ flip : (A+B)×C → D

where s f : A× C → D

t g : B × C → D

flip = 〈snd, fst〉

pair (s : A ⊢ B) (t : A ⊢ C) : A ⊢ B × C

〈f, g〉 : A → (B × C)
where s f : A → B

t g : A → C

take (t : A ⊢ C) : A×B ⊢ C
f ◦ (fst : A×B → A) : A×B → C

where t f : A → C

drop (t : B ⊢ C) : A×B ⊢ C
f ◦ (snd : A×B → B) : A×B → C

where t f : B → C

Fig. 5: Translation from Simplicity terms to BCCs morphims

The most interesting case is the translation of case s t. While case has type (A +
B) × C ⊢ D, its closest morphism—copair—has type (C × (A + B)) → D, hence

we cannot use it directly since the type signatures do not align. From category theory,

however, we know about the symmetry of products, i.e., A × B and B × A are prov-

ably isomorphic and therefore there must exist an isomorphism between them. We use

one direction of that isomophism—called flip in Figure 5—to build the corresponding

morphism of case.

By mapping Simplicity functions into BCCs, the attentive reader could be afraid

that we might be introducing or restricting the behavior of Simplicity programs. For

Towards Adding Variety to Simplicity 7

example, on one hand, products need to fulfill certain equations in BCCs (recall pre-

vious Section). On the other hand, there is no relation stated for Simplicity operators

like pair, take, and drop. It is easy to show that Simplicity operators already fulfill all

the equations required by BCCs. We refer readers to the accompanying material for the

details of the proof.

We have now established the connection between Simplicity functions and BCCs

morphisms and we can start adding more features to Simplicity (Section 5). Category

theory will guide us toward the implementation of user-defined functions. This would be

a significant improvement to Simplicity, as it would allow to write simpler and shorter

programs.

4 Implementation

data T

data a :∗ : b
data a :+: b

Fig. 6: Simplicity Types

In this section, we present another of our contribu-

tions: an implementation of Simplicity, its categori-

cal model, and the SBM as embedded domain-specific

languages (eDSL) in Haskell [4]. To implement BCCs

in Haskell, we need to determine what the objects and

morphisms are going to be in Haskell. By doing so, we

restrict ourselves to a particular class of BCCs that we call BCCsHask, where categorical

objects are represented with Haskell types.

We model both types in Simplicity and objects in BCCsHask with the empty types

given in Figure 6. Type T is the unit/terminal, type a :∗ : b is the product, and type a :
+ : b is the coproduct. In what follows, we will model the term language of Simplicity

and morphisms in BCCsHask using Generalized Algebraic Data Types (GADTs) [8].

The use of GADTs allows us to directly encode the typing judgements of Simplicity

and BCCsHask in the constructors. In that manner, the Haskell’s type checker ensures

that Simplicity functions and BCCsHask morphisms are well-typed by construction.

4.1 An eDSL for Simplicity

We model Simplicity programs as values of the following GADT parameterized over

an input type i and an output type o:

data Simpl i o where

Iden :: SType a ⇒ Simpl a a

Unit :: SType a ⇒ Simpl a T

Take :: (SType a, SType b, SType c) ⇒ Simpl a c → Simpl (a :∗ : b) c
Drop :: (SType a, SType b, SType c) ⇒ Simpl b c → Simpl (a :∗ : b) c
Injl :: (SType a, SType b, SType c) ⇒ Simpl a b → Simpl a (b :+: c)
Injr :: (SType a, SType b, SType c) ⇒ Simpl a c → Simpl a (b :+: c)
Comp :: (SType a, SType b, SType c) ⇒

Simpl a b → Simpl b c → Simpl a c

Pair :: (SType a, SType b, SType c) ⇒
Simpl a b → Simpl a c → Simpl a (b :∗ : c)

8 N. Valliappan et al.

Case :: (SType a, SType b, SType c, SType d) ⇒ Simpl (a :∗ : c) d →
Simpl (b :∗ : c) d → Simpl ((a :+: b) :∗ : c) d

The type constraint SType a restricts the domain of the type variable a. In our case, a

type variable a satisfies the constraint SType a only if it is instantiated with T , a :∗ : b
or a :+ : b, where a and b are simplicity types themselves. The reason for adding this

constraint is two fold: first, to ensure that a Simplicity expression cannot be created for

some arbitrary Haskell type such as [Int] (as this might break the property that the size

of the type can be determined statically), and second, to implement a function sizeOf

to calculate the size (in bits) of a Simplicity type—which is used later to run programs

on the SBM.

In Haskell, type constraint SType is implemented as a type class, and the Simplicity

types which satisfy it are implemented as instances of such a class:

class SType a where

sizeOf :: a → Int

instance SType T where

...

instance (SType a, SType b) ⇒ SType (a :+: b) where

...

instance (SType a, SType b) ⇒ SType (a :∗ : b) where

...

(Ellipsis are used to denote Haskell code that is not relevant for the point being made.)

Each Simplicity type instance must provide a definition for the sizeOf function. Recall

that the SBM works by allocating cells in the stack frames based on the type information

(Section 2.1). For brevity, we skip the implementation of sizeOf but it can be found in

the accompanying material. Later in Section 4.4, we show how to leverage sizeOf to

implement the SBM.

4.2 An eDSL for BCCsHask

In BCCsHask, we model objects as Haskell types and morphisms as values of the GADT

Mph :

data Mph obj a b where

Id :: obj a ⇒ Mph obj a a

Terminal :: obj a ⇒ Mph obj a T

Fst :: (obj a, obj b) ⇒ Mph obj (a :∗ : b) a
Snd :: (obj b, obj b) ⇒ Mph obj (a :∗ : b) b
Inj

1
:: (obj a, obj b) ⇒ Mph obj a (a :+: b)

Inj
2

:: (obj a, obj b) ⇒ Mph obj b (a :+: b)
⊙ :: (obj a, obj b, obj c) ⇒

Mph obj b c → Mph obj a b → Mph obj a c

Factor :: (obj a, obj b1, obj b2) ⇒
Mph obj a b1 → Mph obj a b2 → Mph obj a (b1 :∗ : b2)

Towards Adding Variety to Simplicity 9

CoFactor :: (obj a, obj b, obj c, obj e) ⇒ Mph obj (e :∗ : a) c →
Mph obj (e :∗ : b) c → Mph obj (e :∗ : (a :+: b)) c

This data type is parameterized over a type constraint obj and objects a and b. Each

constructor of this data type constructs a morphism in a given BCCHask. A type con-

straint obj a ensures the type a is indeed an object of the considered BCCHask, and not

some arbitrary Haskell type.

The main difference between SType in Simpl and obj in Mph is that SType is a

specific type constraint, while obj is parameterized over. Observe that different instan-

tiations of obj might encode different BCCsHask. For instance, if obj gets instantiated

with SType , we obtain a BCCHask which models Simplicity in Haskell (as shown in the

next Section) 5. From now on, we refer to this category as simply BCCHask.

4.3 A Translation from Simplicity to BCCHask

The translation from Simplicity to BCCHask is a Haskell function (named simpl2mph)

between the eDSLs presented above. In other words, we show how to translate a pro-

gram prog :: Simpl i o to a morphism m ::Mph SType i o. The constraint obj is now

instantiated with SType, and hence the objects in the BCCHask are Simplicity types. The

translation is essentially a syntactic translation of the rules in Figure 5—a nice aspect

of our approach.

simpl2mph :: Simpl i o → Mph SType i o

simpl2mph Iden = Id

simpl2mph Unit = Terminal

simpl2mph (Take f) = simpl2mph f ⊙ Fst

simpl2mph (Drop f) = simpl2mph f ⊙ Snd

simpl2mph (Injl f) = Inj
1
⊙ (simpl2mph f)

simpl2mph (Injr f) = Inj
2
⊙ (simpl2mph f)

simpl2mph (Pair p q) = Factor (simpl2mph p) (simpl2mph q)
simpl2mph (Comp f g) = simpl2mph g ⊙ simpl2mph f

simpl2mph (Case p q) = (CoFactor (simpl2mph p ⊙ flip)
(simpl2mph q ⊙ flip)) ⊙ flip

where

flip = Factor Snd Fst

As explained in Section 3, constructor Case p q needs an auxiliary morphism flip

to use CoFactor .

4.4 The SBM

Given the close correspondence between Simplicity’s primitives and BCCs’ morphisms,

the execution of morphisms on the SBM is very similar to the execution of Simplicity

5 The encoding of a category using the eDSL for BCCsHask does not ensure that the category is

indeed a BCC. It is the programmers responsibility to ensure this by verifying the existence of

constructed morphisms and proving the corresponding laws. The eDSL is simply the “language

of BCCs where objects are Haskell types.”

10 N. Valliappan et al.

functions. A given morphism is translated to instructions of the SBM, which are then

executed on the SBM to yield the output.

We start by looking at the SBM interface. The instructions of the SBM are imple-

mented as a Haskell data type (see Figure 7a). For brevity, we only show some of the

instructions here. Type Bit is an alias for Bool representing a single bit value on the

SBM.

data Inst = Nop

| Write Bit

| Copy Int

| Skip Int

| Fwd Int

| Read
...

(a) SBM Instructions

1 type Frame = ([Maybe Bit], Int)
2 type Stack = [Frame]

3 data Machine = Machine

4 {readStack :: Stack
5 ,writeStack :: Stack }

6 type SBM = State Machine

(b) SBM components

Fig. 7: SBM data types

A list of these instructions are run on the SBM using the function:

run :: [Inst] → SBM (Maybe Bit)

where output type SBM is a monadic type [11] which encapsulates the stateful be-

havior of the SBM. This design choice arise from noticing that the evaluation of each

instruction may change the state of the SBM, and hence affect the execution of subse-

quent instructions. More specifically, the SBM type is defined as shown in Figure 7b

line 6, where a value of type Machine (lines 3-5) represents a configuration of the vir-

tual machine at a given moment. The configuration is composed of read (readStack)

and write (writeStack) stacks, which are themselves composed of frames. A frame is a

list of cells paired with a cursor. The cursor points to the current cell in the frame and

is implemented as an Int representing the index of the current cell. A cell is encoded

as a Maybe Bit , as it can host an undefined value (recall Section 2.1). A cell with an

undefined value is represented by Nothing , otherwise it is a Just value with a Bit .

A given BCCHask morphism is translated into a list of SBM instuctions using the

function

mph2sbm ::Mph Types a b → [Inst]

We will look at a few cases of the mph2sbm implementation to illustrate how it works.

To understand how to map a morphism m : A → B into the SBM, we need to think

of it as a Simplicity function f : A ⊢ B (recall that we proved that such models are

equivalent in Section 3.1). In this light, the instructions corresponding to m must as-

sume (before their execution) that the machine is initialized with a configuration where

a value of type A is on the active read frame. Post execution of m, the active write frame

must contain a value of type B. For example, to execute the morphism id : A → A,

the value of A must be available on the read stack. The expected end configuration is

Towards Adding Variety to Simplicity 11

the same value of A on the write stack. That is, we need to copy as many bits as the

size of A from the read stack to the write stack. This operation is achieved by using the

Copy instruction. To determine the size of A, we use the sizeOf function—where the

constraint SType (introduced earlier) on type A comes into action. The implementation

of this case is as follows:

mph2sbm (Id ::Mph SType a a) = [Copy (sizeOf (⊥ :: a))]

(Observe that this definition works for any identity morphism since it is polymorphic

in a). To give sizeOf an argument of type a, we must construct a value of that type.

For this, we use the value ⊥ which constructs (or inhabits) every Haskell (and hence

Simplicity) type. Notice that Simplicity types are empty data types, and the inhabitant

of the type has no significance. We are only interested in the type a as it gives us the

corresponding definition of sizeOf .

mph2sbm ((g ::Mph SType b c) ⊙
(f ::Mph SType a b)) =
[NewFrame (sizeOf (⊥ :: b))]
++mph2sbm f

++ [MoveFrame]
++mph2sbm g

++ [DropFrame]

Fig. 8: Implementation of ⊙

We implement composition as

show in Figure 8. We first allocate

memory for the intermediate result of

type b, run f (which writes the in-

termediate result on the active write

frame), move the active write frame

to the read stack (using MoveFrame),

and finally run g , which writes the re-

sult of type c on the active write frame;

having at the end the expected config-

uration after executing (⊙). Since the intermediate result of type b is no longer needed,

we drop the active read frame (using DropFrame). Implementing the compilation of

the other morphisms is analogous and can be found in the accompanying material.

5 Adding functions to Simplicity

In this section, we extend the Simplicity core language with user-defined functions,

provide categorical semantics for the extension, and also extend the evaluation model

(SBM) to support the extended semantics. To achieve this, we leverage the exposed con-

nection between Simplicity and categorical models (recall Section 3). From the latter,

we use the concept of exponential objects as a guideline to model functions. We briefly

introduce what it means for a category to have exponentials and discuss their relation

to functions in Simplicity.

◮ Exponentials For objects B and C in a category, an exponential object is a special

object (denoted as B ⇒ C), for which there exists a morphism eval : (B ⇒ C)×B →
C. Additionally, for every morphism f : A × B → C, there must exist a unique

morphism curry(f) : A → B ⇒ C such that f = eval ◦ 〈curry(f) ◦ fst, snd〉. That

is, in a category with exponentials, for every morphism f : A × B → C, there exists

a curried version of it, i.e., curry(f). Figure 9 shows f and the morphisms involving

exponentials—namely curry(f) and eval.

12 N. Valliappan et al.

A×B C

(B ⇒ C)×B

f

〈curry(f) ◦ fst, snd〉 eval

Fig. 9: Exponentials in BCCCs

An exponential object is the cate-

gorical generalization of the function

type (→). Operation curry general-

izes the construction of a lambda ab-

straction—also known as currying in

lambda calculus [1]. The eval mor-

phism generalizes the application of

a function of type B → C to an ar-

gument of type B to return a value of type C.

Exponential objects are implemented by the following data type:

data a :⇒: b

which represents the exponential object a ⇒ b for some objects a and b. To add the new

morphisms, we extendMph with the new constructorsCurry andEval (see Figure 10b)

as described in Figure 9. When we include exponentials in a BCC, it becomes a Bi-

Cartesian Closed Category or a BCCC.

In Simplicity, a :⇒: b is a function type which expects an argument of type a and

returns a value of type b (where a and b are Simplicity types). We add new primitives to

Simplicity’s eDSL as shown in Figure 10a. The constructor Lam accepts a Simplicity

term whose input and output types are (a : ∗ : b) and c respectively, and constructs a

new term Simpl a (b :⇒: c)—where the input is a value of type a and the output is a

function of type b :⇒: c. The App constructor, on the other hand, accepts a Simplicity

term which returns a function of type b :⇒: c and another term which returns a value

of type b, and constructs a term which returns a value of type c.

The translation of the newly added Simplicity terms to BCCCHask (i.e., BCCCs

where objects are Simplicity types) is defined as follows:

simpl2mph (Lam f) = Curry (simpl2mph f)
simpl2mph (App f x) = Eval ⊙ (Factor (simpl2mph f) (simpl2mph x))

This translation provides the categorical semantics for functions in Simplicity, and

hence forms the basis for implementing them.

5.1 Using functions in Simplicity

Note that the language extension in the previous section does not just enable for func-

tions to be defined, but also treats functions as values. This allows for programming

with higher order functions and facilitates some powerful abstractions. For example,

functions can be used to introduce let-bindings into the language. Let-bindings greatly

reduce the duplication of sub-expressions in the language. In the presence of functions,

they can be easily encoded using function application as let x = e in e ′ ≡ (λx →
e ′) e.

Another example of the usefulness of functions is the ability to define a loop com-

binator. The loop combinator (defined below) can be used to repetitively apply a Sim-

plicity term to an input value. Term loop f n applies f on the input n times. This is

possible only when f has the same input and output type, and is hence expected to have

Towards Adding Variety to Simplicity 13

data Simpl i o where

...

Lam :: (SType a,SType b,SType c) ⇒
Simpl (a :∗ : b) c → Simpl a (b :⇒: c)

App :: (SType a,SType b,SType c) ⇒
Simpl a (b :⇒: c) → Simpl a b → Simpl a c

(a) Functions in Simplicity

data Mph obj a b where

...

Curry :: (obj a, obj b, obj c) ⇒
Mph obj (a :∗ : b) c → Mph obj a (b :⇒: c)

Eval :: (obj b, obj c) ⇒ Mph obj ((b :⇒: c) :∗ : b) c

(b) Exponentials in BCC

Fig. 10: Implementation of Functions and Exponentials

the type Simpl a a. Symbol n is a Simplicity term of type SNat (defined below) which

encodes a natural number using using just function abstraction and application—known

as Church numerals in lambda calculus.

type SNat = ∀a. Types a ⇒ Simpl (a :⇒: a) (a :⇒: a)

loop :: Types a ⇒ Simpl a a → SNat → Simpl a a

loop f n = App (App (toLam n) (toLam f)) Iden
where

toLam :: (Types a,Types b,Types r) ⇒ Simpl a b → Simpl r (a :⇒: b)
toLam s = Lam (Drop s)

zero :: SNat
zero = Lam (Drop Iden)

one :: SNat
one = Lam (App (Take Iden)

(Drop Iden))

Fig. 11: Church numerals

For the Haskell aware reader, note that

we use higher-ranked types to define

SNat—a feature of the Haskell type sys-

tem which is not available in Simplicity.

While this might appear disconcerting,

note that this is not a strict requirement

to define a loop combinator. We could in-

stead encode SNat as SNat a, removing

the explicit quantification (∀) and hence the need for higher-ranked types.

Since the programmer must provide a construction of a Simplicity term of type

SNat (which always represents a finite number), the loop can only be used for a finite

number of iterations. Figure 11 illustrates the construction of some of such natural

numbers.

5.2 Implementing functions on SBM

In this section, we extend the SBM—the primary evaluation model of the Simplicity

language—to support higher order functions. To do this, we must implement the trans-

lation of Curry and Eval morphisms to SBM instructions. We start by requiring that an

14 N. Valliappan et al.

exponential object a :⇒: b must also be a valid Simplicity type that satisfies the SType

constraint. Consequently, we must implement an instance of the type class SType for

the type a :⇒: b, i.e., we need to provide a definition for sizeOf (a :⇒: b). For that,

we need to identify a way to store and retrieve exponential objects in the SBM.

Notice that the serialization of a morphism captured in the exponential a :⇒: b

can be arbitrary long, as the morphisms can be arbitrary complex. As a result, it is not

possible to know the number of bits needed to serialize such morphisms only by looking

at the type a :⇒: b. This is problematic since the SBM is not meant to manipulate

types with arbitrary sizes.

To address this issue, we extend the SBM with a new field responsible to store a list

of exponentials. We then represent exponentials in the stack frames as merely pointers

(indexes) into such list. We have not yet defined the size of pointers, but we assume

them to occupy the amount of bits given by a parameter sizePtr—we will see later how

to statically compute it. Additionally, we must devise new SBM instructions responsible

to execute the Curry and Eval morphisms, i.e., instructions responsible to create and

apply exponentials.

If we follow the philosophy of Simplicity that the input (output) type should in-

dicate the values to be read (write) into the stack, a morphism of the form Curry f ::
Mph SType a (b :⇒: c) must be compiled to an instruction that reads a value of type a

from the read stack and places the exponential (of type b :⇒: c) in the write frame. In

this light, we introduce the instruction PutClosure responsible to allocate exponentials:

mph2sbm ::Mph SType a b → Int → [Inst]

mph2sbm (Curry (f ::Mph Types (a :∗ :b) c)) sizePtr =
let aSize = sizeOf (⊥ :: a) sizePtr
in [PutClosure (mph2sbm f sizePtr) aSize sizePtr]

Observe that mph2sbm takes the size of pointers as an extra argument as well as

sizeOf —note that sizeOf could be called on a pointer and thus it needs to know its

size (sizeOf (a :⇒: b) sizePtr = sizePtr). The instruction PutClosure takes three

arguments: the compilation of the curried morphism f :: Mph Types (a : ∗ : b) c

(mph2sbm f sizePtr), the amount of bits to be read from the read stack (aSize), and

the size of pointers (sizePtr). When the SBM executes this instruction, it allocates an

exponential as the pair composed of f ’s instructions, paired with the value of type a

read from the stack—this semantics is inspired by how Cousineau et al. handle expo-

nentials in the Categorical Abstract Machine [2] as closures. The output in the write

stack of PutClosure is the pointer to the recently allocated exponential. For instance,

Figure 12 illustrates the effect of running an instruction PutClosure [Read ; ...] 2 4
under a given configuration of the machine.

In the same line of reasoning, morphism Eval ::Mph SType ((b :⇒: c) :∗ : b) c
should be compiled to an instruction which reads an exponential (i.e., a pointer) together

with a value of type b from the read stack and produces a c in the write stack. To achieve

that, we introduce the instruction EvalClosure in charge of using the exponentials:

mph2sbm (Eval ::Mph SType ((b :⇒: c) :∗ :b) c) sizePtr =
[EvalClosure sizePtr (sizeOf (⊥ :: b) sizePtr)]

Towards Adding Variety to Simplicity 15

Read Stack Write Stack List of exponentials

[. . .1
↑
1 . . .] [. . .?

↑
???? . . .] 0000 ([NewFrame ,Write 1, . . .] , [0010])

[. . .] [. . .]

run (PutClosure [Read , . . .] 2 4)

Read Stack Write Stack Closures list

[. . .1
↑
1 . . .] [. . . 0001?

↑
. . .] 0000 ([NewFrame ,Write 1, . . .] , [0010])

[. . .] [. . .] 0001 ([Read , . . .] , [11])

Fig. 12: Executing PutClosure in the SBM

This instruction takes the size of a pointer (sizePtr) together with the size of the value of

type b (sizeOf (⊥ :: b) sizePtr). When executed, EvalClosure fetches the exponential

via the pointer, and places the value of type b obtained from the read stack as an input to

the instructions that constitute the exponential. (There are actually many intermediate

steps to reach that configuration and we refer the interested reader to the accompanying

material for details.) After the instructions of the exponential get executed, the machine

will have a value of type c in the active write frame.

We still need to define sizeOf for the pointers manipulated in the stacks. To know

the maximal size (in bits) to encode a pointer, we must know the maximal number of

closures existing in a Simplicity program. This number is actually the amount of Curry

occurrences in the morphism denoting our program. The reader can convince herself

that computing this number is a linear traversal in the size of the morphism. Let cc be

the number of Curry in the morphism, then the maximal size (in bits) of the pointers

is sizePtr = log
2
(cc) + 1. Once sizePtr is determined, we can do our translation to

SBM instructions by calling mph2sbm with a morphism and sizePtr as a parameter.

5.3 Static Analysis

A notable property of Simplicity is the ability to statically estimate computational re-

sources needed by a program. This is achieved using the underlying evaluation model,

i.e., the SBM. In this section, we discuss this property in light of the extensions made

to Simplicity and the SBM.

In our model, a given Simplicity program is translated to a BCCHask morphism using

simpl2mph , which is then translated to SBM instructions using mph2sbm . Consider

the problem of estimating the number of instructions executed by the SBM for a given

program. In the absence of exponentials, to count the number of instructions, we simply

count the number of instructions returned by mph2sbm . However, this straightforward

approach fails to hold in the presence of exponentials. This is because the instruction

EvalClosure (introduced for the evaluation of exponentials), cannot be treated as a

single instruction. EvalClosure contains a pointer to a list of instructions executed by

the SBM, which means that it causes several other instructions (including itself) to be

executed.

To mitigate this problem, we must also count the number of instructions that are

referred to by a pointer of EvalClosure . This can be easily calculated in linear time by

16 N. Valliappan et al.

maintaining an environment which contains the pointers and their corresponding list of

instructions as introduced by PutClosure.

The static analysis of cell usage described in [7] extends naturally to exponentials

since all exponential objects are of a fixed sized sizePtr (discussed in the previous

section). However, since our storage model has been extended with a list of closures,

we must also estimate the maximum size of the closure list. It should be possible to

compute an upper bound on the size of the closure list in linear time by maintaining

an external environment (as suggested above). Note that since our extensions do not

provide a mechanism to define recursion, such as a fix-point combinator, an attempt to

perform static analysis in such a fashion must always terminate. However, we have not

implemented this static analysis, and leave it as a suggestion for future work.

6 Final remarks

This work provides a new semantics for Simplicity based on category theory, and ex-

tends Simplicity with user defined and higher order functions. Using functions, we have

established the foundational and practical basis to enrich the language towards other in-

teresting features such as bounded loops. As long as we stay under a computational

model similar to the simply typed lambda calculus, we argue that it is possible to carry

out “quick” static analysis to predict resource usage in Simplicity programs. We evalu-

ate our theory by providing an implementation of our results and approach in Haskell.

Our hope is to make the language even more useful to develop smart contracts with

formal guarantees.

Acknowledgments This work was funded by the Swedish Foundation for Strategic Re-

search (SSF) under the project Octopi (Ref. RIT17-0023) and the Swedish research

agency Vetenskapsrådet.

References

1. Barendregt, H., Dekkers, W., Statman, R.: Lambda calculus with types. Cambridge Univer-

sity Press (2013)

2. Cousineau, G., Curien, P., Mauny, M.: The categorical abstract machine. Science of Com-

puter Programming 8(2), 173–202 (1987)

3. Elliott, C.: Compiling to categories. In: Proceedings of the ACM on Programming Languages

(ICFP) (2017), http://conal.net/papers/compiling-to-categories

4. Marlow, S.: Haskell 2010 language report (2010), http://www.haskell.org/

5. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

6. O’Connor, R.: Simplicity: A new language for blockchains. In: Proc. of the Workshop on

Programming Languages and Analysis for Security. PLAS ’17, ACM (2017)

7. O’Connor, R.: Simplicity: A new language for blockchains. CoRR abs/1711.03028 (2017),

http://arxiv.org/abs/1711.03028

8. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type

inference for gadts. In: ACM SIGPLAN Notices. vol. 41, pp. 50–61. ACM (2006)

9. Schwartz, D., Youngs, N., Britto, A., et al.: The ripple protocol consensus algorithm. Ripple

Labs Inc White Paper 5 (2014)

http://conal.net/papers/compiling-to-categories
http://www.haskell.org/
http://arxiv.org/abs/1711.03028

Towards Adding Variety to Simplicity 17

10. Swan, M.: Blockchain: Blueprint for a new economy. O’Reilly Media, Inc. (2015)

11. Wadler, P.: Monads for functional programming. In: International School on Advanced Func-

tional Programming. pp. 24–52. Springer (1995)

12. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper 151, 1–32 (2014)

	Towards Adding Variety to Simplicity

