Not half-baked, raw!

Retrofitting Impure Languages with
Static Information-Flow Control

Nachiappan Valliappan, Alejandro Russo

OOOOOOOOOOOOOOOOOOOOOO

Guilt-free side eftects

In an “impure” language
print .. String -> O
getLine :: String

As opposed to being shamed for it

print :: String -> I0 OO
getLine :: IO String

The beauty of purity

Everyone is shamed alike, including attackers!

speedyThirdPartyAdd :: Int -> Int -> I0 Int

The beauty of purity

Unsafe interface

1sCommonPwd :: String -> I0 Bool

Safe interface

1sCommonPwd :: Laby String -> MAC, (Laby Bool)

Alejandro Russo. Two Can Keep a Secret, If One of Them Uses Haskell. 2015.

The ugliness of purity

The ugliness impracticality of purity

Most languages are not pure!

The atrocity of impurity

Unsafe interface

1sCommonPwd :: String -> Bool

Safe interface

27

How do you restrict something you cannot even see?!

Fine-grained IFC?

* Reimplement the entire compiler

* Refactor existing programs extensively

Recovering purity using a ‘modal’ type (2020)

Recovering Purity with Comonads and Capabilities

VIKRAMAN CHOUDHURY, Indiana University, USA and University of Cambridge, UK
NEEL KRISHNASWAMI, University of Cambridge, UK

In this paper, we take a pervasively effectful (in the style of ML) typed lambda calculus, and show how to extend
it to permit capturing pure expressions with types. Our key observation is that, just as the pure simply-typed
lambda calculus can be extended to support effects with a monadic type discipline, an impure typed lambda
calculus can be extended to support purity with a comonadic type discipline.

Designing specific modal types (2017)

Fitch-Style Modal Lambda Calculi

Ranald Clouston*

Department of Computer Science, Aarhus University, Denmark
ranald.clouston@cs.au.dk

Capabilities for information tlow (2011)

Capabilities for information flow

Arnar Birgisson ~ Alejandro Russo ~ Andrei Sabelfeld

Chalmers University of Technology
{arnar.birgisson,russo,andrei}@chalmers.se

Retrofitting IFC, the gist

Pure and safe

1sCommonPwd :: Laby String -> MAC, (Laby Bool)
Impure, yet safe

1sCommonPwd :: []y String -> I0Cap, -> []4 Bool

Safe implementation

1sCommonPwd :: []y String -> I0Cap, -> []4 Bool
1sCommonPwd bpwd 1oc =
let pwds = 1oc.wget(“ben.se/commonpwds”);
boxy $
let pwd = unboxy bpwd;
pwd elem pwds

Attempt to leak

1sCommonPwd :: []y String -> I0Cap, -> []4 Bool
1sCommonPwd bpwd 1oc =
let pwds = 1oc.wget(“ben.se/commonpwds”);
boxy $
let pwd = unboxy bpwd;
1o0c.wget(“bob.se/snoopy?pwd="++pwd) ;
pwd elem pwds

Attempt to leak

1sCommonPwd :: []y String -> I0Cap, -> []4 Bool
1sCommonPwd bpwd 1oc =
let pwds = 1oc.wget(“ben.se/commonpwds”);
boxy $
let pwd = unboxy bpwd;
x 1o0c.wget(“bob.se/snoopy?pwd="++pwd) ;
pwd elem pwds

The two-part story

1) Retrofit an impure language with capabilities

2) Restrict use of capabilities using a modal type

Capabilities for eftects

print :: Print;y -> String -> O
getLine :: GetlLine; -> String

Retrofitting with capabilities

Every program P that uses this API

print .. String > O
getlLine :: String

can be injected into a language that uses this API

print :: Print; -> String -> O
getLine :: GetLine,; -> String

by making Print; and GetL1ine; available in the context of P

Retrofitting with capabilities

print str prc.print str

[.eaks are a feature!

legallLeak :: GetLiney -> Print, -> Q)
legallLeak glc prc = prc.print(glc.getLine());

Leaks can be blocked

notALeak :: []y GetLiney -> Print, -> [y O
notALeak glc prc = ..

Restricting use of capabilities

Print, should not be accessible inside [] A

GetlL1iney should not be accessible inside [], A

Importing a boxed type

¢ A

I'=¢:0,A
,& - unbox t: A

A Import

Importing a boxed type

¢ A

I'-¢:0,A
I,&,I"Funboxt: A

A Import Ve . @y ¢ T

Mostly technical, can be factored out

Importing read capabilities

RCapy

a

RCapy

Import

Fl—t:RCap@ f’gf

[',&@, - promote, . t: RCap,

Importing write capabilities

WCap,,

a

WCap,,

Import

Fl_t:WCapgf KEE/

[, &, - promote . t: WCap,,

Importing ground types

String
a

I'Ht:T
I',& - promote,, t: 7

String Import

Exporting a boxed type

& +-t: A
I'boxt:[A

A Export

Imports and exports on arbitrary types

A

Import

A is an arbitrary type

Export

Fitch-style modal calculus

o= |Tz: A|T, &y
, r.a&+-t: A
, Ve @) ¢ T ‘
I'N'e:AI"Fx: A I'boxt: A
I'Et: A 'Ht: A Con(¢, A)

Ve . @y ¢ T Ve By ¢ T

I,&,I"unboxt: A & I'Fpromotet: A

Some properties of the system

I'7— U7

I' = g(A%B)—)

¥ RCapg

- A
I'=0pA

gA% gB

¥ WCape

Normalization (CBV)

() unbox (boxt) — t

Experimental extensions

We can currently write this
labAnd :: [],y Bool -> [], Bool -> [], ([]y Bool)

But we could also write this

labAnd :: []4y Bool -> [], Bool -> []y ([], Bool)

So perhaps we want this?

com : g(@A)% g/(gA)

Experimental extensions

Perhaps index by two labels for more precise labeling?

0. 0. A

Roadmap

- Prove normalization and a suitable notion of noninterference

- Extend with richer capabilities

(exceptions, mutable state, etc.)

- Extend with quantification over labels

- Maybe, just maybe, implement an actual language

EOM

