
Kripke-Style Semantics for Strong Functors

Nachiappan Valliappan[0000−0002−9358−3852]

University of Edinburgh, Edinburgh, United Kingdom
nachi.v@ed.ac.uk

Abstract. Strong functors are a ubiquitous programming abstraction
in typed-functional programming. Strong functors originate from cate-
gory theory, and the categorical semantics of strong functors in typed-
lambda calculi are thus naturally well-understood. The same cannot be
said, however, of their Kripke-style or possible-world semantics, which
are of recurring interest in formal logic and programming languages. We
address this gap by identifying possible-world semantics for a family of
lambda calculi featuring strong functors. We then study the connection
to categorical semantics and illustrate an application of this connection
in modular implementation and verification of normalization algorithms.

Keywords: intuitionistic modal logic · presheaves · normalization

1 Introduction

In typed-functional programming functors, or precisely strong functors, are a
programming abstraction that capture the essence of mapping a function over a
data structure while preserving its structure. For instance, in the programming
language Haskell, a type constructor Arrn that denotes arrays of size n is an
example of a strong functor. Over an array of type Arrn A we may map a func-
tion f : A⇒B to obtain an array of type Arrn B. Arrays, heaps, lists, trees are
some examples of several data structures that can be viewed as strong functors.
Monads, or precisely strong monads, are a special class of strong functors that
are popular for modelling effects as data in a pure functional programming lan-
guage [26,33]. Despite the widespread application of strong functors and monads,
there remain some pressing open questions in their theoretical foundations.

Strong functors and monads originate from category theory, and their com-
putational behavior in lambda calculi have been derived from their categorical
counterparts. Given the direct correspondence, categorical semantics of strong
functors in lambda calculi are well-understood [18,26,24]. For the study of cer-
tain meta-theoretic properties, such as lambda definability and normalization,
however, categorical semantics alone is insufficient. The focus of categorical se-
mantics (in this area) has been that of generality, and it does not restrict our
attention to a class of models small enough for a specific purpose. Constructing
a categorical model thus requires a significant amount of ingenuity even when it
need not. A complementary approach that has shown promise to alleviate this
difficulty is the so-called Kripke-style or possible-world semantics [25].

2 N. Valliappan

Possible-world semantics originate from formal logic and were famously used
by Saul Kripke to study the completeness of classical modal logic [19] and intu-
itionistic propositional logic [20]. Mitchell and Moggi [25] later introduced possi-
ble-world semantics (dubbed Kripke-style semantics) to typed-lambda calculi for
“their practical advantage” of being “easy to devise Kripke counter-models”. They
note that possible-world semantics “seem to support a set-like intuition about
lambda terms better than arbitrary cartesian closed categories”. They also put
forth Kripke logical relations, which have become standard equipment to prove
meta-theoretic properties about lambda calculi in a variety of domains.

One area where the study of possible-world semantics appears to be rewarding
(and has led to renewed interest [31]) is normalization. Normalization is a valu-
able meta-theoretic property that is difficult to prove. Catarina Coquand [10,11]
proved normalization for a typed lambda calculus in the proof assistant Alf [23]
by constructing a possible-world model as an instance of Mitchell and Moggi’s
semantics. This model-based approach to normalization, known as Normaliza-
tion by Evaluation (NbE) [8,7], dispenses with tedious syntactic reasoning that
typically complicate normalization proofs and is amenable to mechanization in a
proof assistant. A notable corollary in Coquand’s work is the constructive proof
of completeness for possible-world semantics that follows from normalization.

Our work can be seen as an extension of the work of Mitchell and Moggi [25]
and Coquand [11] to lambda calculi with strong functors. We develop possible-
world semantics for a family of lambda calculi with strong functors à la Mitchell
and Moggi and, akin to Coquand, mechanize completeness proofs for each calcu-
lus by constructing NbE models in Agda. In the process, we identify a suitable
extension of Kripke logical relations for these calculi to prove normalization.

The development of possible-world semantics for strong functors has also
been of interest from a logical perspective as a foundation for type systems [6,4].
Viewed through the lens of the Curry-Howard correspondence, a strong functor
type can be understood as a modality in the underlying intuitionistic logic. In
this view, our work addresses the following open questions:

1. What is the intuitionistic modal logic that corresponds to strong functors?
2. How do we give possible-world semantics to this modal logic?
3. How do the possible-world semantics of this modal logic relate to the com-

putational behaviour of strong functors and their categorical semantics?

If we restrict our attention in the above questions to strong monads, Fairtlough
and Mendler [13] and Benton, Bierman and de Paiva [6] answer the first two, and
Alechina et al. [4] provide a partial answer to the third. A satisfactory treatment
of question 3 that demonstrates a link through presheaves is still missing. We
address this gap, not just for strong monads, but also for weaker strong functors.

Normalization for strong monads—specifically extensions of Moggi’s monadic
meta-language [26]—is well-understood [14,21,3], but has not been studied from
the perspective of possible-world semantics or modal logic. The creative contri-
bution of this article lies in its observation that normalization algorithms for
strong functors (some known and new) can be constructed systematically as
instances of possible-world semantics by doing lesser “routine work”.

Kripke-Style Semantics for Strong Functors 3

The family of calculi we study in this article are minimal extensions of the
simply-typed lambda calculus (STLC) with the following operations or axioms:

S : A× ♢B ⇒ ♢(A×B) R : A⇒ ♢A J : ♢♢A⇒ ♢A

We define a calculus λSF for strong functors by extending STLC with a unary
type constructor ♢ that admits axiom S (for “strength”). By further extending
λSF with the axioms R (for “return”) and J (for “join”), we arrive at three more
calculi: a calculus for strong pointed functors λPF that admits axiom S and R
(but not J), a calculus for strong semimonads (or joinable functors) λJF that
admits axiom S and J (but not R), and a calculus for strong monads λML (also
known as Moggi’s monadic metalanguage [26]) that admits all three axioms1.

In Section 2, we restrict our attention to the calculus λSF. We present a sim-
plified possible-world semantics that interprets the strong functor type former ♢
as an intuitionistic possibility modality, and illustrate the construction of an
NbE model as an instance. In Section 3, we use a refined two-dimensional possi-
ble-world semantics [17], which can also be called presheaf semantics, that makes
the connection to categorical semantics evident and provides an opportunity for
modular construction of NbE models. In Section 4, we show that the two-dimen-
sional approach extends seamlessly to the remaining calculi λPF, λJF, and λML.
In Section 5 we discuss related work on modal logic and lambda calculi, and
conclude with observations about possible extensions and current limitations.
All the key formal results in this article have been mechanized in Agda2.

2 Possible-World Models of Strength

The types and typing contexts of λSF, λPF, λJF, and λML are defined alike as:

Ty A,B := ι | ⊤ | A×B | A⇒B | ♢A Ctx Γ,∆ := · | Γ,A

The type ι denotes an uninterpeted base type (i.e., a ground type with no specific
operations), ⊤ denotes the unit type, A×B denotes product types, A⇒B denotes
function types, and ♢A denotes strong functor types. The context · denotes the
empty context, while Γ,A denotes the extension of a context Γ with a type A.

In this section, we define the terms, typing rules and equational theory of
λSF and observe its categorical semantics. We present a simplified possible-world
semantics for λSF that ignores the equational theory of λSF and views λSF as
a natural deduction proof calculus for judgements Γ ⊢ A. We then illustrate
the construction of an NbE model for λSF as an instance of this semantics. We
conclude this section by observing a difficulty in adapting the simplified seman-
tics to incorporate the equational theory of λSF, and the overhead of repeating
this process for the remaining calculi λPF, λJF, and λML. In the later Sections 3
and 4, we address this difficulty using two-dimensional possible-world semantics.
1 Observe that axiom S is interderivable with its alternative formulation in functional

programming as a function fmap : (A⇒B)⇒ ♢A⇒ ♢B, while the axioms R and J
are immediately the monadic functions return : A⇒ ♢A and join : ♢♢A⇒ ♢A.

2 https://github.com/nachivpn/s

https://github.com/nachivpn/s

4 N. Valliappan

2.1 The calculus λSF

The terms, typing rules and equational theory of λSF are defined in Figure 1.
The judgements Γ ⊢ t : A define intrinsically well-typed terms of λSF and
judgements Γ ⊢ t ∼ t′ : A define well-typed equations. We define well-typed
(and scoped) variables using de Bruijn indices as judgments Γ ⊢var v : A with
constructs zero and succ. The notation t[u] denotes the substitution of term u
in t for the variable zero, and the operator wk “weakens” a term Γ ⊢ t : A by
embedding it into a larger context Γ ≤ Γ ′ as Γ ′ ⊢ wk t : A.

The λSF calculus extends STLC (featuring products) with a construct letmapSF
(see Rule SF/♢-Letmap) that “maps” a term Γ,A ⊢ u : B over a term Γ ⊢ t : ♢A
and two new equations (Rule SF/♢-η and Rule SF/♢-β).

Var-Zero
Γ,A ⊢var zero : A

Var-Succ
Γ ⊢var v : A

Γ,B ⊢var succ v : A

Var
Γ ⊢var v : A

Γ ⊢ var v : A

⊤-Intro
Γ ⊢ unit : ⊤

×-Intro
Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ pair t u : A×B

×-Elim-1
Γ ⊢ t : A×B

Γ ⊢ fst t : A

×-Elim-2
Γ ⊢ t : A×B

Γ ⊢ snd t : B

⇒-Intro
Γ,A ⊢ t : B

Γ ⊢ λ t : A⇒B

⇒-Elim
Γ ⊢ t : A⇒B Γ ⊢ u : A

Γ ⊢ app t u : B

SF/♢-Letmap
Γ ⊢ t : ♢A Γ,A ⊢ u : B

Γ ⊢ letmapSF t u : ♢B

⊤-η
Γ ⊢ t : ⊤

Γ ⊢ t ∼ unit : ⊤

×-η
Γ ⊢ t : A×B

Γ ⊢ t ∼ pair (fst t) (snd t) : A×B

×-β1

Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ fst (pair t u) ∼ t : A

×-β2

Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ snd (pair t u) ∼ u : B

⇒-η
Γ ⊢ t : A⇒B

Γ ⊢ t ∼ λ (app (wk t) (var zero)) : A⇒B

⇒-β
Γ,A ⊢ t : B Γ ⊢ u : A

Γ ⊢ app (λ t)u ∼ t[u] : B

SF/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letmapSF t (var zero) : ♢A

SF/♢-β
Γ ⊢ t : ♢A Γ,A ⊢ u : B Γ,B ⊢ u′ : C

Γ ⊢ letmapSF (letmapSF t u)u′ ∼ letmapSF t (u′[u]) : ♢C

Fig. 1. Well-typed terms and equational theory for λSF

Kripke-Style Semantics for Strong Functors 5

Categorical semantics A categorical model of λSF is given by a cartesian-closed
category C (1 ,×,⇒) with a strong functor ♢ : C → C and a C-object Vι that
interprets the base type ι. Given a model C of λSF, we interpret types in λSF as
C-objects and terms Γ ⊢ t : A as C-morphisms JtK : JΓ K → JAK (at times written
explicitly as JΓ K →C JAK) by induction on types and terms respectively:

Jι K = Vι

J⊤ K = 1
JA×B K = JAK × JBK
JA⇒BK = JAK ⇒ JBK
J♢A K = ♢JAK

J−K : Γ ⊢ A → (JΓ K →C JAK)
J. . . K = . . .
Jpair t u K = ⟨JtK, JuK⟩
J. . . K = . . .
JletmapSF t uK = ♢JuK ◦ θJΓ K,JBK ◦ ⟨id JΓ K, JtK⟩

The STLC constructs are interpreted as usual with the cartesian-closure of C. For
example, we interpret a pair of terms pair t u by a pair of morphisms ⟨JtK, JuK⟩.
We define JletmapSF t uK : JΓ K → ♢JAK for terms Γ ⊢ t : ♢B and Γ,B ⊢ u : A
by constructing a morphism ⟨id JΓ K, JtK⟩ : JΓ K → JΓ K × ♢JBK, and composing it
with θJΓ K,JBK : JΓ K × ♢JBK → ♢(JΓ K × JBK) and ♢JuK : ♢(JΓ K × JBK) → ♢JAK,
where the former is given by strength and the latter by functorial action of ♢.

Proposition 1 (Categorical semantics for λSF). Given two terms t, u in
λSF, Γ ⊢ t ∼ u : A if and only if for all models C of λSF JtK = JuK : JΓ K →C JAK.

Proof. Follows by induction on the judgment Γ ⊢ t ∼ u : A in one direction,
and by a term model construction (see for e.g., [9, Section 3.2]) in the converse.

2.2 Possible-world semantics

Meta-theory Traditionally, the possible-world semantics for a modal logic is given
in a classical meta-theory using sets and relations. In contrast, we work in a
constructive type-theoretic meta-theory that resembles that of Agda [1], and
denote the universe of types in this language by Type. This means that we shall
use a type W : Type in place of a set W , and correspondingly a relation on
types R : W → W → Type in place of a relation on sets R ⊆ W ×W .

Frames and Models A possible-world frame F = (W,Ri, Rm) is a triple that
consists of a type W : Type of worlds and two accessibility relations Ri, Rm:
W → W → Type (for “intuitionistic” and “modal”) on worlds, subject to the
frame conditions that Ri is reflexive and transitive and Ri

−1;Rm ⊆ Rm;Ri
−1,

as witnessed by the functions:

– refli : ∀w.w Ri w
– transi : ∀w,w′, w′′. w Ri w

′ → w′ Ri w
′′ → w Ri w

′′

– factor : ∀w,w′, v. w Ri w
′ → w Rm v → ∃v′. (w′ Rm v′ × v Ri v

′)

A possible-world model M = (F, V) couples a frame F with a valuation
function V that assigns to a base type ι a world-indexed family Vι : W → Type
accompanied by a “weakening” function wkι : ∀w,w′. w Ri w

′ → Vι,w → Vι,w′ .

6 N. Valliappan

Interpreting Types Given a possible-world model M = (F, V), the possible-world
interpretation of types in λSF is given by interpreting a type A (in the calculus)
as a family of types JAKw : Type (in the meta-theory) indexed by worlds w : W .

Jι Kw = Vι,w

J⊤ Kw = ⊤
JA×B Kw = JAKw × JBKw
JA⇒BKw = ∀w′. w Ri w

′ → JAKw′ → JBKw′

J♢A Kw = ∃v. w Rm v × JAKv

The interpretation of the base type ι is given by the valuation function V , and
the unit, product and function types are interpreted as usual in a possible-world
model. We interpret the strong functor type former as a possibility modality
in modal logic: the interpretation of a type ♢A at a world w is given by the
interpretation of A at some “future” world v along with a proof of w Rm v wit-
nessing the connection from w to v via Rm. The typing contexts are interpreted
as usual by taking the cartesian product of families: J·Kw = ⊤, where ⊤ denotes
the nullary product, and JΓ,AKw = JΓ Kw × JAKw for some arbitrary world w.

A desired property of possible-world semantics, known as the monotonicity
lemma, can be shown to be retained under the given interpretation of types.
Lemma 1 (Monotonicity lemma). For all types A, we have a weakening
function wkA : ∀w,w′. w Ri w

′ → JAKw → JAKw′ , and similarly for contexts, we
have wkΓ : ∀w,w′. w Ri w

′ → JΓ Kw → JΓ Kw′ for every context Γ .
Intuitively, the monotonicity lemma allows us to “transport” along the relation Ri

an element a : JAKw at a world w, given i : w Ri w
′, to an intuitionistic future w′

as wk i a : JAKw′ , . This lemma is proved by induction on types (and similarly
contexts), where the case of ♢A is dealt with using the frame condition factor .

Inclusion Condition To interpret terms of λSF, we must impose an additional
“inclusion” condition Rm ⊆ Ri on possible-world frames. This condition, in light
of Lemma 1, enables us to transport elements along the relation Rm. From a
logical perspective, this condition enables models to validate the characteristic
axiom S : A× ♢B ⇒ ♢(A×B) of λSF. The following proposition explains how.

We say that a model M validates an axiom X, denoted M |= X, to mean
that the interpretation JXKw is inhabited (or “holds”) for all worlds w in M and
for all instantiations of axiom X’s type scheme. We say that frame F validates
axiom X, denoted F |= X, to mean that (F, V) |= X for all valuations V .
Proposition 2. Give any frame F = (W,Ri, Rm), F |= S if the underlying
accessibility relations Ri and Rm satisfy the inclusion condition Rm ⊆ Ri, as
witnessed by a function incl : ∀w, v. w Rm v → w Ri v.

Proof. For some world w, and types A,B, we must show JA×♢B⇒♢(A×B)Kw.
This amounts to showing JAKv′ and JBKv′ for some world v′ such that w′ Rm v′,
given proofs i : w Ri w

′, m : w′ Rm v and elements a : JAKw′ and b : JBKv for
worlds w′, v : W . We pick v for v′ and obtain b : JBKv′ and m : w′ Rm v′. We then
obtain an Ri-proof incl m : w′ Ri v

′ from m using incl and transport a to world v′

by applying the montonicity lemma (Lemma 1) as wkA (incl m) a : JAKv′ .

Kripke-Style Semantics for Strong Functors 7

Interpreting Terms A possible-world model of λSF is a possible-world model (F, Vι)
whose frame F = (W,Ri, Rm) satisfies the inclusion condition Rm ⊆ Ri. The
terms in λSF are interpreted as a family of functions as follows:

J−K : Γ ⊢ A → (∀w. JΓ Kw → JAKw)
Jvar v K γ = lookup v γ
Junit K γ = ()
Jpair t u K γ = (JtK γ, JuK γ)
Jfst t K γ = π1(JtK γ)
Jsnd t K γ = π2(JtK γ)
Jλ t K γ = λi. λa. JtK (wkΓ i γ, a)
Japp t u K γ = (JtK γ) refli (JuK γ)
JletmapSF t uK γ = (m, JuK (wkΓ (incl m) γ, a))

where (m : w Rm v, a : JAKv) = JtK γ

Interpretation of STLC terms follows the usual routine: we interpret variables by
projecting the environment γ : JΓ Kw using a function lookup, the unit and pair
constructs (unit, pair, fst, snd) with their semantic counterparts ((), (−,−), π1,
π2), and the function constructs (λ,app) with semantic function abstraction and
application while handling Ri-proofs appropriately. The interesting case is that of
letmapSF: given terms Γ ⊢ t : ♢A and Γ,A ⊢ u : B, and an environment γ : JΓ Kw,
we must produce an element of type J♢BKw = ∃v. w Rm v × JBKv. Recursively
interpreting t gives us a pair (m : w Rm v, a : JAKv), using the former of which we
transport γ along Rm to the world v, as wkΓ (incl m) γ : JΓ Kv, which is in turn
used to recursively interpret u, thus obtaining the desired element of type JBKv.

Normalization by Evaluation The objective of normalization is to define a func-
tion norm : Γ ⊢ A → Γ ⊢nf A, assigning a normal form to every term in λSF. The
judgements Γ ⊢nf A defined in Figure 2 characterize normal forms. As usual,
they are defined alongside judgements Γ ⊢ne A denoting “neutral” terms.

Ne/Var
Γ ⊢var v : A

Γ ⊢ne var v : A

Nf/Up
Γ ⊢ne n : ι

Γ ⊢nf upn : ι

Nf/Unit
Γ ⊢nf unit : ⊤

Ne/×-Elim-1
Γ ⊢ne n : A×B

Γ ⊢ne fstn : A

Ne/×-Elim-2
Γ ⊢ne n : A×B

Γ ⊢ne sndn : B

Nf/×-Intro
Γ ⊢nf n : A Γ ⊢nf m : B

Γ ⊢nf pairnm : A×B

Nf/⇒-Intro
Γ,A ⊢nf n : B

Γ ⊢nf λn : A⇒B

Ne/⇒-Elim
Γ ⊢ne n : A⇒B Γ ⊢nf m : A

Γ ⊢ne appnm : B

NF/♢-Letmap/SF
Γ ⊢ne n : ♢A Γ,A ⊢nf m : B

Γ ⊢nf letmapSF nm : ♢B

Fig. 2. Neutral terms and Normal forms for λSF

8 N. Valliappan

reifyA;Γ : JAKΓ → Γ ⊢nf A
reify ι;Γ n = upn
reify⊤;Γ u = unit
reifyA×B;Γ p = pair (reifyA;Γ (π1 p)) (reifyB;Γ (π2 p)))
reifyA⇒B;Γ f = λ (reifyB;(Γ,A)(f newA;Γ (reflectA;(Γ,A) (var zero))))

reify♢A;Γ p = letmapSF n (reifyA;(Γ,B) a)

where (singlen : Γ ◁SF (Γ,B), a : JAKΓ,B) = p

reflectA;Γ : Γ ⊢ne A → JAKΓ
reflectι;Γ n = n
reflect⊤;Γ n = ()
reflectA×B;Γ n = (reflectA;Γ (fstn), reflectB;Γ (sndn))
reflectA⇒B;Γ n = λ(i : Γ ≤ Γ ′). λa. reflectB;Γ (app (wkA⇒B i n) (reifyA;Γ ′ a))
reflect♢A;Γ n = (singlen, reflectA;(Γ,A) (var zero))

Fig. 3. Reification and reflection for λSF

To define norm we first construct a possible-world model, known as the NbE
model, where contexts are worlds. By construction, we obtain an interpretation
or evaluation of terms J−K : Γ ⊢ A → (∀∆. JΓ K∆ → JAK∆) for this model as an
instance of the interpretation of terms for an arbitrary possible-world model. We
then show that this model exhibits a function quote : (∀∆. JΓ K∆ → JAK∆) →
Γ ⊢nf A. With quote, the normalization function is simply norm = quote ◦ J−K.

We construct the NbE model (N,Vι) with a frame N = (Ctx ,≤,◁SF), taking
contexts for worlds, the weakening relation ≤ on contexts for Ri, and the modal
accessibility relation ◁SF for Rm—both defined as follows:

base : · ≤ ·
i : Γ ≤ Γ ′

dropA i : Γ ≤ Γ ′, A

i : Γ ≤ Γ ′

keepA i : Γ,A ≤ Γ ′, A

Γ ⊢ne n : ♢A

singlen : Γ ◁SF Γ,A

We use neutral terms for valuation as Vι,Γ = Γ ⊢ne ι, and complete the con-
struction by showing all the necessary conditions are satisfied. In particular, we
can define incl : ∀Γ,∆. Γ ◁SF ∆ → Γ ≤ ∆ to satisfy the inclusion condition.

In the constructed NbE model, we define quote as:

quote : (∀∆. JΓ K∆ → JAK∆) → Γ ⊢nf A
quote f = reifyA,Γ (f idEnvΓ)

We apply the given function f to an element idEnvΓ : JΓ KΓ , and then reify the
result using the auxiliary function reify defined in Figure 3 alongside another
auxiliary function reflect. The functions reify and reflect are characteristic of
NbE and enable the definition of quote. Our choice for the parameters that define
frame N is key in defining these functions. In particular, our choice of ◁SF for
Rm is key in defining the case of ♢A in reify and reflect. The missing definition
of elements such as idEnvΓ and newA;Γ : Γ ≤ Γ,A are given in Appendix A.4.

Kripke-Style Semantics for Strong Functors 9

Towards two-dimensional semantics The simplified possible-world semantics and
NbE model construction in this section can be extended to the remaining calculi
by imposing additional frame conditions. This possibility can be understood by
validating their characteristic axioms. Given an arbitrary possible-world frame F

– F |= R when Rm reflexive (reflm : ∀w.w Rm w)
– F |= J when Rm transitive (transm : ∀u, v, w. u Rm v → v Rm w → u Rm w)

In the simplified approach, however, proving soundness and completeness of an
equational theory for possible-world semantics (akin to categorical semantics
in Proposition 1) is a far more tedious and repetitive task. These proofs require
extensive and ad hoc calculus specific lemmas and offer no opportunity for reuse.
The key to a modular development lies in the connection between possible-
world and categorical models. We study a refined class of frames that makes this
connection apparent in the upcoming Section 3 and renew our study of semantcs
for the remaining calculi in Section 4 thereafter with a more efficient approach.

3 Two-Dimensional Possible-World Frames

A two-dimensional frame (dubbed 2-frame) is a frame F = (W,Ri, Rm) (as
defined earlier in Section 2.2) subjected to the following coherence conditions:

– transi refli i = i and transi i refli = i
– transi (transi i i′) i′′ = transi i (transi i′ i′′)
– factor refli m = (m, refli)
– factor (transi i1 i2)m = (m′

2, (transi i′1 i
′
2))

where (i′1,m
′
1) = factor i1 m and (i′2,m

′
2) = factor i2 m′

1.

Coherence conditions impose restrictions on how the functions refli , transi and
factor (witnessing frame conditions) compute proofs. The first two coherence
conditions state that that relation Ri determines a category Wi whose objects
are given by worlds and morphisms by proofs of Ri, with refli witnessing the iden-
tity morphisms and transi witnessing the composition of morphisms. The latter
conditions on factor give us desired structure on models (see Proposition 3).

A 2-frame determines a category of covariant presheaves Ŵi indexed by the
category Wi . A two-dimensional model, or a presheaf model, M = (F, V) couples
a 2-frame F with a valuation V that assigns to a base type ι an object Vι of Ŵi .

It is well-known that categories of presheaves are cartesian-closed. Thus the
category Ŵi is cartesian-closed and as a result a model of STLC. This suggests
that we need not interpret STLC types and terms directly in Ŵi , but can instead
derive this interpretation by instantiating its categorical semantics. Similarly,
showing that Ŵi exhibits a strong functor ♢ is sufficient to obtain a presheaf
interpretation for λSF, due to Proposition 1. This section details the structures
that Ŵi exhibits under the imposition of various conditions on 2-frames.

Proposition 3 (♢ Functor). The presheaf category Ŵi determined by a 2-
frame F = (W,Ri, Rm) (subject to no further conditions) exhibits an endofunc-
tor ♢, defined for a presheaf P at some world w as (♢P)w = ∃v. w Rm v × Pv.

10 N. Valliappan

Proof. The function factor and the coherence conditions imposed on it ensure
that ♢P is in fact a presheaf, with factor giving the action of the presheaf and
the coherence conditions on factor (e.g., factor refli m = (m, refli)) proving the
presheaf laws. The functorial action of ♢ on a natural transformation f : P

·−→ Q
to yield ♢f : ♢P

·−→ ♢Q is defined by applying the component of f at the world
witnessing the existential quantification. The functorial laws follow immediately.

3.1 Strong Functors

A strong functor F : C → C for a cartesian category C is an endofunctor on C
with a natural transformation θP,Q : P×FQ → F (P×Q) natural in C-objects P
and Q such that the following diagrams stating coherence conditions commute:

1 × FP F (1 × P)

FP

π2

θ1,P

Fπ2

(P ×Q)× FR F ((P ×Q)×R)

P × (Q× FR) P × F (Q×R) F (P × (Q×R))

αP,Q,FR

θP×Q,R

FαP,Q,R

idP×θQ,R θP,Q×R

Observe that the terminal object 1 , the projection morphism π2 : P × Q → Q
and the associator morphism αP,Q,R : (P × Q) × R → P × (Q × R) (for all
C-objects P,Q,R) live in the cartesian category C.

Proposition 4 (♢ Strong). The functor ♢ on Ŵi is a strong functor if the
underlying 2-frame (W,Ri, Rm) satisfies the inclusion condition Rm ⊆ Ri, as
witnessed by a function incl : ∀w, v. w Rm v → w Ri v.

Proof. Follows from the definition of functor ♢ in Proposition 3, and by defining
the natural transformation θ using the function incl (following Proposition 2).

3.2 Pointed Functors

A pointed functor F : C → C on a category C is an endofunctor on C equipped
with a natural transformation point : Id ·−→ F from the identity functor Id on C.

Proposition 5 (♢ Pointed). The functor ♢ on Ŵi is pointed if Rm is reflex-
ive, as witnessed by a function reflm : ∀w.w Rm w.

Proof. Follows from the definition of functor ♢ in Proposition 3, and by defining
the natural transformation point using the function reflm.

Kripke-Style Semantics for Strong Functors 11

A strong and pointed functor F is said to be strong pointed, when it satisfies
an additional coherence condition that point is a strong natural transformation,
meaning that the following diagram stating a coherence condition commutes:

P ×Q

P × FQ F (P ×Q)

idP×pointQ pointP×Q

θP,Q

Proposition 6 (♢ Strong Pointed). The functor ♢ on Ŵi is strong pointed
if Rm is reflexive and satisfies inclusion condition such that incl reflm = refli .

Proof. Propositions 4 and 5 give us that functor ♢ is strong and pointed. We
use incl reflm = refli to show that point is a strong natural transformation.

3.3 Semimonads

A semimonad F : C → C, or joinable functor, on a category C is an endo-
functor on C that forms a semigroup in the sense that it is equipped with a
“multiplication” natural transformation µ : F 2 ·−→ F that is “associative” as
µP ◦ µFP = µP ◦ F (µP) : F

3P → FP .

Proposition 7 (♢ Semimonad). The functor ♢ on Ŵi is a semimonad if Rm

is associatively transitive, as witnessed by a function transm : ∀u, v, w.
u Rm v → v Rm w → u Rm w that composes some proofs m1,m2,m3 of Rm

such that transm (transm m1 m2)m3 = transm m1 (transm m2 m3).

Proof. Follows from the definition of functor ♢ in Proposition 3, and by defining
the natural transformation µ using the function transm.

A strong functor F that is also a semimonad is a strong semimonad when µ
is a strong natural transformation, meaning that the following diagram stating
a coherence condition commutes:

P × FFQ F (P × FQ) FF (P ×Q)

P × FQ F (P ×Q)

idP×µQ

θP,FQ FθP,Q

µP×Q

θP,Q

Proposition 8 (♢ Strong Semimonad). The functor ♢ on Ŵi is a strong
semimonad if Rm is associatively transitive and satisfies the inclusion condition
such that incl (transm m1 m2) = transi (incl m1) (incl m2) for some proofs m1,m2.

Proof. Propositions 4 and 7 give us that functor ♢ is strong and a semimonad. We
use the given coherence condition incl (transm m1 m2) = transi (incl m1) (incl m2)
to show that µ is a strong natural transformation.

12 N. Valliappan

3.4 Monads

A monad F : C → C on a category C is a semimonad that is pointed, such
that the natural transformation point : Id ·−→ F is the left and right unit of
multiplication µ : F 2 ·−→ F in the sense that µP ◦ FpointP = idFP and µP ◦
pointFP = idFP for some C-object P .

Proposition 9 (♢ Monad). The functor ♢ on Ŵi is a monad if proofs of the
relation Rm form a category Wm, with worlds for objects, reflm witnessing the
identity morphisms and transm witnessing the composition of morphisms.

Proof. Propositions 5 and 7 give us that functor ♢ is a semimonad and pointed.
We use the unit laws of the category Wm to show the unit laws of the monad.

A strong functor F that is also a monad is a strong monad when the natural
transformations point and µ of the monad are both strong natural transforma-
tions, making F both a strong pointed functor and a strong semimonad.

Proposition 10 (♢ Strong Monad). The functor ♢ on Ŵi is a strong monad
if proofs of Rm form a category Wm and satisfies the inclusion condition such
that the function incl determines an inclusion functor from Wm to Wi .

Proof. Follows immediately from Propositions 6, 8 and 9.

3.5 Constructing Presheaf Models

Figure 4 illustrates dependency in proofs of Propositions 3 to 10 and suggests op-
portunity for modularity in constructing presheaf models. Observe, for example,
Propositions 6 and 8 both reuse Proposition 4. Models can thus be constructed
for λPF and λJF using the same calculation of strength used in a model of λSF.

♢ Functor (3)

♢ Pointed (5) ♢ Semimonad (7)

♢ Monad (9) ♢ Strong (4)

♢ Strong Pointed (6) ♢ Strong Semimonad (8)

♢ Strong Monad (10)

Fig. 4. Proof dependency in Propositions 3 to 10 (shade highlights strong propositions)

Kripke-Style Semantics for Strong Functors 13

4 Presheaf Semantics

Two-dimensional possible-world semantics, or simply presheaf semantics, is given
for a calculus by interpreting types as presheaves and terms as natural transfor-
mations. However, we need not define explicit interpretation functions J−K for
types and J−K : Γ ⊢ A → JΓ K ·−→ JAK for terms as in Section 2.2. Since presheaves
are objects in the category Ŵi with natural transformations as morphisms, we
can derive the presheaf interpretation for a calculus from its categorical seman-
tics if we show that Ŵi is a categorical model of the calculus.

In this section, we derive presheaf semantics for all four calculi by instanti-
ating their respective categorical semantics. We then construct an NbE model
for each calculus by instantiating its presheaf semantics and showing that the
model exhibits a function quote : JΓ K ·−→ JAK → Γ ⊢nf A. As in Section 2.2, quote
yields a normalization function norm = quote ◦ J−K. We prove the correctness
of normalization, i.e., norm t ∼ t for all t, by formulating a generic extension of
Kripke logical relations suitable for all calculi. The soundness and completeness
of each calculus’ equational theory for presheaf semantics follows as corollaries.

4.1 Presheaf Semantics for λSF

Presheaf interpretation for λSF A presheaf model of λSF is a presheaf model P =
(F, Vι) where the underlying 2-frame F satisfies the inclusion condition. The
interpretation of types and terms in λSF, and the soundness of the equational
theory, i.e. equivalent terms have the same denotation, are given by Corollary 1.

Corollary 1 (Presheaf interpretation for λSF). For every term Γ ⊢ t : A in
λSF, we have a natural transformation JtK : JΓ K ·−→ JAK in an arbitrary presheaf
model P of λSF. Further if Γ ⊢ t ∼ u : A for some u, then JtK = JuK : JΓ K ·−→ JAK.

Proof. By applying Proposition 4 we get that the category Ŵi determined by
P exhibits a strong functor ♢, and is thus a categorical model of λSF. The cat-
egorical interpretation of λSF in Section 2.1 (preceding Proposition 1) gives us
a morphism JtK : JΓ K →Ŵi

JAK for every term t, which is a natural transforma-
tions JtK : JΓ K ·−→ JAK. Soundness of the interpretation follows from Proposition 1.

Proposition 1 states a biimplication, but we only need the soundness half for the
proof of Corollary 1. The completeness of the equational theory for presheaf se-
mantics is a stronger statement, and we will prove it as corollary by constructing
an NbE model and showing that the resulting normalization function is correct.

NbE model for λSF Recollect that we constructed the (one-dimensional) possible-
world NbE model for λSF in Section 2.2 using the frame N = (Ctx ,≤,◁SF) and
valuation Vι,Γ = Γ ⊢ne ι. To construct a presheaf NbE model for λSF, we must
show that N is a 2-frame that satisfies the additional coherence conditions and
that Vι is a presheaf. Both these requirements are indeed satisfiable.

14 N. Valliappan

LA,Γ : Γ ⊢ A → JAKΓ → Type
Lι;Γ t n = t ∼ n
L⊤;Γ t u = ⊤
LA×B;Γ t p = LA;Γ (fst t)(π1 p)× LB;Γ (snd t)(π2 p)
LA⇒B;Γ t f = ∀Γ ′, i : Γ ≤ Γ ′, u, a. LA;Γ ′ u a → LB;Γ ′ (app (wk i t)u) (f i a)
L♢A;Γ t p = ∃(∆ ⊢ u : A). t ∼ collect (m,u)× LA;Γ u a

where (m : Γ ◁ ∆, a : JAK∆) = p

Fig. 5. Kripke logical relations to prove normalization

The function quote is also defined as before in Section 2.2 using natural
transformations reify and reflect by additionally showing that the definitions in
Figure 3 are natural. For the case of type ♢A, however, we opt for a more general
approach that extends readily to the remaining calculi. We will use natural
transformations collect : ♢(Nf A)

·−→ Nf (♢A) and register : Ne (♢A)
·−→ ♢(Ne A),

where Nf A and Ne A are type-indexed presheaves given by normal forms and
neutral terms respectively, and ♢ is the presheaf functor (from Proposition 3).

reifyA;Γ : JAK ·−→ Nf A
reify ...;Γ = . . .
reify♢A;Γ = collect ◦ ♢(reifyA;Γ)

reflectA;Γ : Ne A ·−→ JAK
reflect ...;Γ = . . .
reflect♢A;Γ = ♢(reflectA;Γ) ◦ register

We will define collect and register seperately for each calculus, leaving defi-
nitions of reify and reflect uniform for all calculi. For λSF, they are defined as:

collectSF : ♢(Nf A)
·−→ Nf (♢A)

collectSF (singlen,m) = letmapSF nm
registerSF : Ne (♢A)

·−→ ♢(Ne A)
registerSF n = (singlen, var zero)

To prove correctness of the normalization function norm, we define a logical
relation L extending the usual definition for STLC as in Figure 5. The relation L
relates a term Γ ⊢ t : A to an element t : JAKΓ as L t v when t ∼ reify v. Observe
that we consider normal forms as terms and leave the embedding Γ ⊢nf A →
Γ ⊢ A implicit, and that we write t ∼ u instead of Γ ⊢ t ∼ u : A for brevity.

Proposition 11 (Correctness of normalization for λSF). For all terms t
in λSF, t is equivalent to its assigned normal form, i.e., t ∼ norm t.

Proof. We prove the “fundamental lemma” of logical relations, giving us that for
any term t, we have L t (JtK idEnv). It follows that t ∼ reify (JtK idEnv) = norm t.

Corollary 2 (Completeness of presheaf interpretation for λSF). For any
two terms t, u in λSF, if for all presheaf models of λSF JtK = JuK then t ∼ u.

Proof. In the NbE model, we know JtK = JuK implies norm t = norm u. By Propo-
sition 11, we also know t ∼ norm t and u ∼ norm u, thus t ∼ u.

Theorem 1 (Presheaf semantics for λSF). For any two terms t, u in λSF,
Γ ⊢ t ∼ u : A if and only if for all presheaf models of λSF JtK = JuK : JΓ K ·−→ JAK.

Proof. Follows immediately from Corollaries 1 and 2.

Kripke-Style Semantics for Strong Functors 15

4.2 Presheaf Semantics for λML

The calculus λML extends STLC with constructs returnML and letML (defined as
below) and three standard equations sometimes referred to as the “monad laws”
(Rule ML/♢-β, Rule ML/♢-η and Rule ML/♢-ass in Appendix A.3).

ML/♢-Return
Γ ⊢ t : A

Γ ⊢ returnML t : ♢A

ML/♢-Let
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B

Γ ⊢ letML t u : ♢B

A categorical model of λSF is a cartesian-closed category equipped with a
strong monad ♢. Proposition 12 states the categorical semantics of λML with
the standard categorical interpretation and proof as for λSF in Proposition 1.

Proposition 12 (Categorical semantics for λML). Given two terms t, u in
λML, Γ ⊢ t ∼ u : A if and only if for all models C of λML JtK = JuK : JΓ K →C JAK.

A presheaf model of λML is a presheaf model P = (F, Vι) where the under-
lying 2-frame F = (W,Ri, Rm) satisfies the inclusion condition Rm ⊆ Ri such
that the witness function incl that determines a functor incl : Wm → Wi . By
applying Proposition 10, we know that F determines a strong monad ♢ on the
category of presheaves Ŵi , making Ŵi a categorical model of λML as well. As a
consequence, we obtain a sound presheaf interpretation for λML as a corollary of
Proposition 12, just as we did for λSF in Corollary 1.

We construct the NbE model for λML using the 2-frame F = (Ctx ,≤,◁ML)
using the following definitions of normal forms (omits those of STLC) and modal
acessibility relation ◁ML. The definition of neutral terms does not change.

ML/NF/♢-Return
Γ ⊢nf n : A

Γ ⊢nf returnML n : ♢A

ML/NF/♢-Let
Γ ⊢ne n : ♢A Γ,A ⊢nf m : ♢B

Γ ⊢nf letML nm : ♢B

nil : Γ ◁ML Γ
Γ ⊢ne n : ♢A m : Γ,A ◁ML ∆

consnm : Γ ◁ML ∆

Observe that relation ◁ML satisfies the inclusion condition and is reflexive and
transitive, since we can define the functions reflm and transm. These functions
satistisfy all necessary coherence conditions (e.g., transm is associative) as well.

We can complete the definition of the normalization function and show that
it is correct by defining the natural transformations collect and register as below.
collectML (nil, v) = returnML v
collectML (consnm, v) = letML n (collectML (m, v))

registerML n = (consn nil, var zero)

We define collectML by induction on the modal relation ◁ML and prove the
fundamental lemma for the logical relation L in Figure 5 once again. As a result,
we obtain the correctness of normalization for λML (akin to Proposition 11) and
completeness of the presheaf interpretation for λML (akin to Corollary 2).

Theorem 2 (Presheaf semantics for λML). For any two terms t, u in λML,
Γ ⊢ t ∼ u : A if and only if for all presheaf models of λML JtK = JuK : JΓ K ·−→ JAK.

16 N. Valliappan

4.3 Presheaf Semantics for λPF and λJF

The calculus λPF extends λSF with a construct returnPF, retaining letmapSF as
letmapPF, and an equation letmapPF (returnPF t)u ∼ returnPF (u[t]).

PF/♢-Return
Γ ⊢ t : A

Γ ⊢ returnPF t : ♢A

A categorical model of λPF is a cartesian-closed category equipped with a strong
pointed functor ♢. As before with λSF and λML, the categorical semantics of
λPF can be established. The presheaf interpretation can be derived by applying
Proposition 6 for presheaf models whose frames satisfy appropriate conditions.
We construct the NbE model as before with the 2-frame (Ctx ,≤,◁PF), using
the following definitions of normal forms (omits those of STLC) and ◁PF.

PF/NF/♢-Return
Γ ⊢nf n : A

Γ ⊢nf returnPF n : ♢A

PF/NF/♢-Letmap
Γ ⊢ne n : ♢A Γ,A ⊢nf m : B

Γ ⊢nf letmapPF nm : ♢B

nil : Γ ◁PF Γ
Γ ⊢ne n : ♢A

singlen : Γ ◁PF Γ,A

Observe that relation ◁PF satisfies the inclusion condition and is reflexive, but
not transitive. We define natural transformations collect and register as below.

collectPF (nil,m) = returnPF m
collectPF (singlen,m) = letmapPF nm registerPF n = (singlen, var zero)

With the constructed NbE model, we once again prove the correctness of nor-
malization and reproduce the presheaf semantics theorem for λPF.

Theorem 3 (Presheaf semantics for λPF). For any two terms t, u in λPF,
Γ ⊢ t ∼ u : A if and only if for all presheaf models of λPF JtK = JuK : JΓ K ·−→ JAK.

The calculus λJF extends λSF with a construct letJF, while retaining the con-
struct letmapSF as letmapJF, and three equations concerning letJF and letmapJF
(see Rule JF/♢-β2, Rule JF/♢-com, Rule JF/♢-ass in Appendix A.2).

JF/♢-Let
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B

Γ ⊢ letJF t u : ♢B

The categorical and presheaf semantics is given following the same process
for the other calculi. A categorical model of λJF is cartesian-closed category
equipped with a strong semimonad ♢, and presheaf models are given by 2-frames
that satisfy the frame and coherence conditions stipulated by Proposition 8.

Kripke-Style Semantics for Strong Functors 17

The NbE model can be constructed using the following definitions of normal
forms for λJF (omits those of STLC) and modal accessibility relation ◁JF.

JF/NF/♢-Letmap
Γ ⊢ne n : ♢A Γ,A ⊢nf m : B

Γ ⊢nf letmapJF nm : ♢B

JF/NF/♢-Let
Γ ⊢ne n : ♢A Γ,A ⊢nf m : ♢B

Γ ⊢nf letJF nm : ♢B

Γ ⊢ne n : ♢A

singlen : Γ ◁JF Γ,A

Γ ⊢ne n : ♢A m : Γ,A ◁JF ∆

consnm : Γ ◁JF ∆

Observe that relation ◁PF satisfies the inclusion condition and is transitive, but
not reflexive. We define natural transformations collect and register as below.

collectJF (singlen, v) = letmapJF n v
collectJF (consnm, v) = letJF n (collectJF (m, v))

registerJF n = (singlen, var zero)

The presheaf semantics theorem follows the same argument as before.

Theorem 4 (Presheaf semantics for λJF). For any two terms t, u in λJF,
Γ ⊢ t ∼ u : A if and only if for all presheaf models of λJF JtK = JuK : JΓ K ·−→ JAK.

5 Related and Further Work

Our interpretation of strong functors as an intuitionistic possibility modality is
based on the observation that a normal form Γ ⊢nf ♢A in all our calculi consists
of a normal form of type A in some extended context Γ,A1, A2...An. We capture
this context extension using a proof-relevant instantiation of the relation Rm.

The concept of intuitionistic possibility as a fixed modality with a corre-
sponding set of frame conditions does not appear to have reached a consensus.
Our interpretation and the frame condition Ri

−1;Rm ⊆ Rm;Ri
−1 can be found

in Plotkin and Stirling [28, Section 1] and Simpson [29, Chapter 3.3 (“F1”)].
Simpson [29] gives a comprehensive summary of a myriad of different frame
conditions that have been used to study intuitionistic necessity and possibility.
Discussions concerning frame conditions and other proof theoretic considerations
in intuitionistic modal logic can as well be found in later work [4,27,16,22,12].

Fairtlough and Mendler [13] devise propositional lax logic (PLL) as an exten-
sion of intuitionistic propositional logic with a “curious modality ⃝” that “has a
flavour of both possibility and of necessity”. Motivated by constraint solving in
hardware verification, they give the following possible-world interpretation:

J⃝AKw = ∀w′. w Ri w
′ → ∃v. w′ Rm v × JAKv

A PLL formula ⃝A is to be understood as a formula A that is subject to some set
of verification constraints. PLL exhibits the axioms R : A⇒⃝A, J : ⃝⃝A⇒⃝A
and S′ : ⃝A×⃝B⇒⃝(A×B). They formulate Hilbert and Gentzen style proof
systems and give possible-world semantics for PLL by requiring the relation Rm

to be reflexive, transitive and satisfy Rm ⊆ Ri. They also show the deductive
soundness and completeness of their proof systems for possible-world semantics.

18 N. Valliappan

Benton, Bierman and de Paiva [6] independently formulate a logic equivalent
to PLL called CL-logic from a logical reconstruction of λML. They devise cat-
egorical and possible-world semantics for CL-logic and leave open the question
of the connection in between them. Their possible-world semantics requires the
relation Rm to be hereditary, meaning if JAKw and w Rm v then JAKv, and they
show deductive completeness using a Henkin-model construction.

The logical equivalence between PLL and CL-logic carries over to presheaves.
The modality ⃝ determines a functor ⃝ on Ŵi that is naturally ismorphic to ♢.

Proposition 13. The presheaf functors ♢ and ⃝ determined by an arbitrary
2-frame (subject to no further conditions) are naturally isomorphic.

Alechina at al. [4] study a connection between categorical and possible-world
models of PLL/CL-logic. They show that a PLL-modal algebra determines a
possible-world model of PLL [4, Theorem 4] via the Stone representation, and
observe that a modal algebra is a thin categorical model (i.e., whose morphisms
are given by the partial-order relation of the algebra). This connection, while
illuminating, is insufficient for our purposes of constructing NbE models. Our
approach is to instead show that possible-world frames determine presheaf mod-
els, which are themselves categorical models. In specific, we follow Kavvos [17] in
observing that a refined class of so-called two-dimensional possible-world models
are presheaf models. We do not, however, study the connection to profunctors.

The connection of our work to classical modal logic can be observed (in a
classical meta-theory) by instantiating the relation Ri to the identity relation.
It can be shown that the remaining conditions on frames are necessary and
sufficient for validating the classical modal axioms S, R and J. The study of nec-
essary and sufficient frame conditions, known as frame correspondence, appears
to be tricky in the intuitionistic setting. Plotkin and Stirling [28] prove a cor-
respondence theorem that gives us that the corresponding frame conditions for
axioms R and J are reflexivity of Rm;Ri

−1 and Rm
2 ⊆ Rm;Ri

−1 respectively.
We have not studied frame correspondence in this article, but leave it as a mat-
ter for future work that can demystify the zoo of frame conditions in literature.
A categorical perspective like that of Kavvos [17] is likely to be beneficial here.

Coquand [10,11] mechanized the completeness of STLC with explicit sub-
stitutions for possible-world semantics by constructing an NbE model in the
proof assistant ALF [23]. Possible-world semantics for STLC does not involve
the modal accessibility relation Rm. The role of the modal accessibility relation
in NbE is a relatively recent consideration, and has been studied for Fitch-style
modal calculi with necessity modalities [31]. NbE for variants and extensions of
λML has been proved correct and mechanized on multiple occasions [14,3,30],
and we have merely reconstructed NbE for λML systematically. Our algorithm
is somewhat extensible: we can extend λML freely with arbitrary uninterpreted
monadic primitives by augmenting the definition of relation ◁ML. The addition
of sum types, however, is a delicate matter [5,15,2,32] that requires further work.

The outcome of this article is not complete possible-world semantics or NbE
for all strong functor calculi, but rather the identification of minimum structure
that all their possible-world and NbE models must inevitably possess.

Kripke-Style Semantics for Strong Functors 19

References

1. Abel, A., Allais, G., Cockx, J., Danielsson, N.A., Hausmann, P., Nordvall Forsberg,
F., Norell, U., López Juan, V., Sicard-Ramírez, A., Vezzosi, A.: Agda 2, https:
//wiki.portal.chalmers.se/agda/pmwiki.php

2. Abel, A., Sattler, C.: Normalization by evaluation for call-by-push-value and polar-
ized lambda calculus. In: Komendantskaya, E. (ed.) Proceedings of the 21st Inter-
national Symposium on Principles and Practice of Programming Languages, PPDP
2019, Porto, Portugal, October 7-9, 2019. pp. 3:1–3:12. ACM (2019). https://doi.
org/10.1145/3354166.3354168, https://doi.org/10.1145/3354166.3354168

3. Ahman, D., Staton, S.: Normalization by evaluation and algebraic effects. In:
Kozen, D., Mislove, M.W. (eds.) Proceedings of the Twenty-ninth Conference on
the Mathematical Foundations of Programming Semantics, MFPS 2013, New Or-
leans, LA, USA, June 23-25, 2013. Electronic Notes in Theoretical Computer Sci-
ence, vol. 298, pp. 51–69. Elsevier (2013). https://doi.org/10.1016/j.entcs.
2013.09.007, https://doi.org/10.1016/j.entcs.2013.09.007

4. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and kripke se-
mantics for constructive S4 modal logic. In: Fribourg, L. (ed.) Computer Science
Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the
EACSL, Paris, France, September 10-13, 2001, Proceedings. Lecture Notes in Com-
puter Science, vol. 2142, pp. 292–307. Springer (2001). https://doi.org/10.1007/
3-540-44802-0_21, https://doi.org/10.1007/3-540-44802-0_21

5. Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.J.: Normalization by evaluation
for typed lambda calculus with coproducts. In: 16th Annual IEEE Symposium
on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001,
Proceedings. pp. 303–310. IEEE Computer Society (2001). https://doi.org/10.
1109/LICS.2001.932506, https://doi.org/10.1109/LICS.2001.932506

6. Benton, P.N., Bierman, G.M., de Paiva, V.: Computational types from a logical
perspective. J. Funct. Program. 8(2), 177–193 (1998). https://doi.org/10.1017/
s0956796898002998, https://doi.org/10.1017/s0956796898002998

7. Berger, U., Eberl, M., Schwichtenberg, H.: Normalization by evaluation. Prospects
for Hardware Foundations: ESPRIT Working Group 8533 NADA—New Hardware
Design Methods Survey Chapters pp. 117–137 (1998)

8. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: Proceedings of the Sixth Annual Symposium on Logic in Com-
puter Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991. pp.
203–211. IEEE Computer Society (1991). https://doi.org/10.1109/LICS.1991.
151645, https://doi.org/10.1109/LICS.1991.151645

9. Clouston, R.: Fitch-style modal lambda calculi. In: Baier, C., Lago, U.D. (eds.)
Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-
20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10803, pp. 258–
275. Springer (2018). https://doi.org/10.1007/978-3-319-89366-2_14, https:
//doi.org/10.1007/978-3-319-89366-2_14

10. Coquand, C.: From semantics to rules: A machine assisted analysis. In: Börger,
E., Gurevich, Y., Meinke, K. (eds.) Computer Science Logic, 7th Workshop, CSL
’93, Swansea, United Kingdom, September 13-17, 1993, Selected Papers. Lecture
Notes in Computer Science, vol. 832, pp. 91–105. Springer (1993). https://doi.
org/10.1007/BFB0049326, https://doi.org/10.1007/BFb0049326

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1017/s0956796898002998
https://doi.org/10.1017/s0956796898002998
https://doi.org/10.1017/s0956796898002998
https://doi.org/10.1017/s0956796898002998
https://doi.org/10.1017/s0956796898002998
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/BFB0049326
https://doi.org/10.1007/BFB0049326
https://doi.org/10.1007/BFB0049326
https://doi.org/10.1007/BFB0049326
https://doi.org/10.1007/BFb0049326

20 N. Valliappan

11. Coquand, C.: A formalised proof of the soundness and completeness of a simply
typed lambda-calculus with explicit substitutions. High. Order Symb. Comput.
15(1), 57–90 (2002). https://doi.org/10.1023/A:1019964114625, https://doi.
org/10.1023/A:1019964114625

12. Das, A., Marin, S.: On intuitionistic diamonds (and lack thereof). In: Ra-
manayake, R., Urban, J. (eds.) Automated Reasoning with Analytic Tableaux
and Related Methods - 32nd International Conference, TABLEAUX 2023, Prague,
Czech Republic, September 18-21, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 14278, pp. 283–301. Springer (2023). https://doi.org/10.1007/
978-3-031-43513-3_16, https://doi.org/10.1007/978-3-031-43513-3_16

13. Fairtlough, M., Mendler, M.: Propositional lax logic. Inf. Comput. 137(1), 1–33
(1997). https://doi.org/10.1006/inco.1997.2627, https://doi.org/10.1006/
inco.1997.2627

14. Filinski, A.: Normalization by evaluation for the computational lambda-calculus.
In: Abramsky, S. (ed.) Typed Lambda Calculi and Applications, 5th International
Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings. Lecture
Notes in Computer Science, vol. 2044, pp. 151–165. Springer (2001). https://doi.
org/10.1007/3-540-45413-6_15, https://doi.org/10.1007/3-540-45413-6_15

15. Fiore, M.P., Simpson, A.K.: Lambda definability with sums via grothendieck logical
relations. In: Girard, J. (ed.) Typed Lambda Calculi and Applications, 4th Interna-
tional Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings. Lecture
Notes in Computer Science, vol. 1581, pp. 147–161. Springer (1999). https://doi.
org/10.1007/3-540-48959-2_12, https://doi.org/10.1007/3-540-48959-2_12

16. Kavvos, G.A.: The many worlds of modal λ-calculi: I. curry-howard for neces-
sity, possibility and time. CoRR abs/1605.08106 (2016), http://arxiv.org/
abs/1605.08106

17. Kavvos, G.A.: Two-dimensional kripke semantics I: presheaves. CoRR
abs/2405.04157 (2024). https://doi.org/10.48550/ARXIV.2405.04157,
https://doi.org/10.48550/arXiv.2405.04157

18. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23(1),
113–120 (1972). https://doi.org/10.1007/BF01304852, https://doi.org/10.
1007/BF01304852

19. Kripke, S.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14
(1959). https://doi.org/10.2307/2964568, https://doi.org/10.2307/2964568

20. Kripke, S.A.: Semantical analysis of intuitionistic logic i. In: Crossley, J.,
Dummett, M. (eds.) Formal Systems and Recursive Functions, Studies in
Logic and the Foundations of Mathematics, vol. 40, pp. 92–130. Elsevier
(1965). https://doi.org/https://doi.org/10.1016/S0049-237X(08)71685-9,
https://www.sciencedirect.com/science/article/pii/S0049237X08716859

21. Lindley, S.: Accumulating bindings. In: Informal proceedings of the 2009 Workshop
on Normalization by Evaluation. pp. 49–56. Citeseer (2009)

22. Litak, T.: Constructive modalities with provability smack. CoRR abs/1708.05607
(2017), http://arxiv.org/abs/1708.05607

23. Magnusson, L., Nordström, B.: The ALF proof editor and its proof engine.
In: Barendregt, H., Nipkow, T. (eds.) Types for Proofs and Programs, Inter-
national Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993,
Selected Papers. Lecture Notes in Computer Science, vol. 806, pp. 213–237.
Springer (1993). https://doi.org/10.1007/3-540-58085-9_78, https://doi.
org/10.1007/3-540-58085-9_78

https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-48959-2_12
https://doi.org/10.1007/3-540-48959-2_12
https://doi.org/10.1007/3-540-48959-2_12
https://doi.org/10.1007/3-540-48959-2_12
https://doi.org/10.1007/3-540-48959-2_12
http://arxiv.org/abs/1605.08106
http://arxiv.org/abs/1605.08106
https://doi.org/10.48550/ARXIV.2405.04157
https://doi.org/10.48550/ARXIV.2405.04157
https://doi.org/10.48550/arXiv.2405.04157
https://doi.org/10.1007/BF01304852
https://doi.org/10.1007/BF01304852
https://doi.org/10.1007/BF01304852
https://doi.org/10.1007/BF01304852
https://doi.org/10.2307/2964568
https://doi.org/10.2307/2964568
https://doi.org/10.2307/2964568
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71685-9
https://www.sciencedirect.com/science/article/pii/S0049237X08716859
http://arxiv.org/abs/1708.05607
https://doi.org/10.1007/3-540-58085-9_78
https://doi.org/10.1007/3-540-58085-9_78
https://doi.org/10.1007/3-540-58085-9_78
https://doi.org/10.1007/3-540-58085-9_78

Kripke-Style Semantics for Strong Functors 21

24. McDermott, D., Uustalu, T.: What makes a strong monad? In: Gibbons, J., New,
M.S. (eds.) Proceedings Ninth Workshop on Mathematically Structured Functional
Programming, MSFP@ETAPS 2022, Munich, Germany, 2nd April 2022. EPTCS,
vol. 360, pp. 113–133 (2022). https://doi.org/10.4204/EPTCS.360.6, https://
doi.org/10.4204/EPTCS.360.6

25. Mitchell, J.C., Moggi, E.: Kripke-style models for typed lambda calculus. Ann. Pure
Appl. Log. 51(1-2), 99–124 (1991). https://doi.org/10.1016/0168-0072(91)
90067-V, https://doi.org/10.1016/0168-0072(91)90067-V

26. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4, https://doi.org/10.1016/
0890-5401(91)90052-4

27. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic.
Math. Struct. Comput. Sci. 11(4), 511–540 (2001). https://doi.org/10.1017/
S0960129501003322, https://doi.org/10.1017/S0960129501003322

28. Plotkin, G.D., Stirling, C.: A framework for intuitionistic modal logics. In: Halpern,
J.Y. (ed.) Proceedings of the 1st Conference on Theoretical Aspects of Reasoning
about Knowledge, Monterey, CA, USA, March 1986. pp. 399–406. Morgan Kauf-
mann (1986)

29. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh, UK (1994), https://hdl.handle.net/1842/407

30. Tom’e Corti nas, C., Valliappan, N.: Simple noninterference by normalization. In:
Mardziel, P., Vazou, N. (eds.) Proceedings of the 14th ACM SIGSAC Workshop
on Programming Languages and Analysis for Security, CCS 2019, London, United
Kingdom, November 11-15, 2019. pp. 61–72. ACM (2019). https://doi.org/10.
1145/3338504.3357342, https://doi.org/10.1145/3338504.3357342

31. Valliappan, N., Ruch, F., Tom’e Corti nas, C.: Normalization for fitch-style modal
calculi. Proc. ACM Program. Lang. 6(ICFP), 772–798 (2022). https://doi.org/
10.1145/3547649, https://doi.org/10.1145/3547649

32. Valliappan, N., Russo, A., Lindley, S.: Practical normalization by evaluation for
edsls. In: Hage, J. (ed.) Haskell 2021: Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell, Virtual Event, Korea, August 26-27, 2021.
pp. 56–70. ACM (2021). https://doi.org/10.1145/3471874.3472983, https://
doi.org/10.1145/3471874.3472983

33. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E.
(eds.) Advanced Functional Programming, First International Spring School on
Advanced Functional Programming Techniques, Båstad, Sweden, May 24-30,
1995, Tutorial Text. Lecture Notes in Computer Science, vol. 925, pp. 24–
52. Springer (1995). https://doi.org/10.1007/3-540-59451-5_2, https://doi.
org/10.1007/3-540-59451-5_2

https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://hdl.handle.net/1842/407
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2

22 N. Valliappan

A Term Calculi

A.1 The calculus λPF

PF/♢-Return
Γ ⊢ t : A

Γ ⊢ returnPF t : ♢A

PF/♢-Letmap
Γ ⊢ t : ♢A Γ,A ⊢ u : B

Γ ⊢ letmapPF t u : ♢B

PF/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letmapPF t (var zero) : ♢A

PF/♢-β1

Γ ⊢ t : ♢A Γ,A ⊢ u : B Γ,B ⊢ u′ : C

Γ ⊢ letmapPF (letmapPF t u)u′ ∼ letmapPF t (u′[u]) : ♢C

PF/♢-β2

Γ ⊢ t : A Γ,A ⊢ u : B

Γ ⊢ letmapPF (returnPF t)u ∼ returnPF (u[t]) : ♢B

Fig. 6. Well-typed terms and equational theory for λPF (omitting those of STLC)

Proposition 14 (Categorical semantics for λPF). Given two terms t, u in
λPF, Γ ⊢ t ∼ u : A if and only if for all models C of λPF JtK = JuK : JΓ K →C JAK.

Corollary 3 (Presheaf interpretation for λPF). For every term Γ ⊢ t : A in
λPF, we have a natural transformation JtK : JΓ K ·−→ JAK in an arbitrary presheaf
model P of λPF. Further if Γ ⊢ t ∼ u : A for some u, then JtK = JuK : JΓ K ·−→ JAK.

Proposition 15 (Correctness of normalization for λPF). For all terms t
in λPF, t is equivalent to its assigned normal form, i.e., t ∼ norm t.

Corollary 4 (Completeness of presheaf interpretation for λPF). For
any two terms t, u in λPF, if for all presheaf models of λPF JtK = JuK then t ∼ u.

Kripke-Style Semantics for Strong Functors 23

A.2 The calculus λJF

JF/♢-Letmap
Γ ⊢ t : ♢A Γ,A ⊢ u : B

Γ ⊢ letmapJF t u : ♢B

JF/♢-Let
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B

Γ ⊢ letJF t u : ♢B

JF/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letmapJF t (var zero) : ♢A

JF/♢-β1

Γ ⊢ t : ♢A Γ,A ⊢ u : B Γ,B ⊢ u′ : C

Γ ⊢ letmapJF (letmapJF t u)u′ ∼ letmapJF t (u′[u]) : ♢C

JF/♢-β2

Γ ⊢ t : ♢A Γ,A ⊢ u : B Γ,B ⊢ u′ : ♢C

Γ ⊢ letJF (letmapJF t u)u′ ∼ letJF t (u′[u]) : ♢C

JF/♢-com
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B Γ,B ⊢ u′ : C

Γ ⊢ letmapJF (letJF t u)u′ ∼ letJF t (letmapJF u (wk u′)) : ♢C

JF/♢-ass
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B Γ,B ⊢ u′ : ♢C

Γ ⊢ letJF (letJF t u)u′ ∼ letJF t (letJF u (wk u′)) : ♢C

Fig. 7. Well-typed terms and equational theory for λJF (omitting those of STLC)

Proposition 16 (Categorical semantics for λJF). Given two terms t, u in
λJF, Γ ⊢ t ∼ u : A if and only if for all models C of λJF JtK = JuK : JΓ K →C JAK.

Corollary 5 (Presheaf interpretation for λJF). For every term Γ ⊢ t : A in
λJF, we have a natural transformation JtK : JΓ K ·−→ JAK in an arbitrary presheaf
model P of λJF. Further if Γ ⊢ t ∼ u : A for some u, then JtK = JuK : JΓ K ·−→ JAK.

Proposition 17 (Correctness of normalization for λJF). For all terms t
in λJF, t is equivalent to its assigned normal form, i.e., t ∼ norm t.

Corollary 6 (Completeness of presheaf interpretation for λJF). For any
two terms t, u in λJF, if for all presheaf models of λJF JtK = JuK then t ∼ u.

24 N. Valliappan

A.3 The calculus λML

ML/♢-Return
Γ ⊢ t : A

Γ ⊢ returnML t : ♢A

ML/♢-Let
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B

Γ ⊢ letML t u : ♢B

ML/♢-β
Γ ⊢ t : A Γ,A ⊢ u : ♢B

Γ ⊢ letML (returnML t)u ∼ u[t] : ♢B

ML/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letML t (returnML (var zero)) : ♢A

ML/♢-ass
Γ ⊢ t : ♢A Γ,A ⊢ u : ♢B Γ,B ⊢ u′ : ♢C

Γ ⊢ letML (letML t u)u′ ∼ letML t (letML u (wk u′)) : ♢C

Fig. 8. Well-typed terms and equational theory for λML (omitting those of STLC)

Corollary 7 (Presheaf interpretation for λML). For every term Γ ⊢ t : A

in λML, we have a natural transformation JtK : JΓ K ·−→ JAK in an arbitrary
presheaf model P of λML. Further if Γ ⊢ t ∼ u : A for some u, then JtK = JuK :
JΓ K ·−→ JAK.

Proposition 18 (Correctness of normalization for λML). For all terms t
in λML, t is equivalent to its assigned normal form, i.e., t ∼ norm t.

Corollary 8 (Completeness of presheaf interpretation for λML). For
any two terms t, u in λML, if for all presheaf models of λML JtK = JuK then
t ∼ u.

Kripke-Style Semantics for Strong Functors 25

A.4 Auxiliary definitions

– The relation ≤ is reflexive and transitive, as witnessed by functions:

refl≤Γ : Γ ≤ Γ
refl≤· = base
refl≤Γ,A = keepA refl≤Γ

trans≤ : Γ ≤ Γ ′ → Γ ′ ≤ Γ ′′ → Γ ≤ Γ ′′

trans≤ i base = i
trans≤ i (drop i′) = drop (trans≤ i i′)
trans≤ (drop i) (keep i′) = drop (trans≤ i i′)
trans≤ (keep i) (keep i′) = keep (trans≤ i i′)

– The proof element new is defined as:

newA;Γ : Γ ≤ Γ,A
newA;Γ = dropA refl≤Γ

– The function factor for the NbE model of λSF is defined as:

factor : ∀Γ, Γ ′, ∆. Γ ≤ Γ ′ → Γ ◁SF ∆ → ∃∆′. (Γ ′ ◁SF ∆′ ×∆ ≤ ∆′)
factor i (singlen) = (single (wk i n), keep i)

– The function incl for the NbE model of λSF is defined as:

incl : ∀Γ,∆. Γ ◁SF ∆ → Γ ≤ ∆
incl (single (n : Γ ⊢ne ♢A)) = newA;Γ

– The element idEnv is defined in the NbE model of λSF (and others) as:

idEnvΓ : JΓ KΓ
idEnv · = ()
idEnvΓ,A = (wkΓ newA;Γ idEnvΓ , reflectA;Γ (var zero))

	KripkeStyle Semantics for Strong Functors

