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Abstract4

Intuitionistic modal logic (IML) is the study of extending intuitionistic propositional logic with5

the box and diamond modalities. Advances in IML have led to a plethora of useful applications in6

programming languages via the development of corresponding type theories with modalities. Until7

recently, IMLs with diamonds have been misunderstood as somewhat peculiar and unstable, causing8

the development of type theories with diamonds to lag behind type theories with boxes. In this9

article, we develop a family of typed-lambda calculi corresponding to sublogics of a peculiar IML with10

diamonds known as Lax logic. These calculi provide a modal logical foundation for various strong11

functors in typed-functional programming. We present possible-world and categorical semantics for12

these calculi and constructively prove normalization, equational completeness and proof-theoretic13

inadmissibility results. Our key results have been formalized using the proof assistant Agda.14
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1 Introduction18

In modal logic, a modality is a unary logical connective that exhibits some logical properties.19

Two such modalities are the connectives □ (“box”) and ♢ (“diamond”). Intuitively, a formula20

□A can be understood as “necessarily A” and a formula ♢A as “possibly A”. In classical21

modal logic, the most basic logic K extends classical propositional logic (CPL) with the22

box modality, the necessitation rule (if A is a theorem then so is □A) and the K axiom23

(□(A ⇒ B) ⇒ □A ⇒ □B). The diamond modality can be encoded in this logic as a dual of24

the box modality: ♢A ≡ ¬□¬A. That is, ♢A is true if and only if ¬□¬A is true.25

In intuitionistic modal logic (IML), there is no consensus on one logic as the most basic26

logic. We instead find a variety of different IMLs based on different motivations. The □27

and ♢ modalities are independent connectives in IML [35, Requirement 5], just as ∧ and ∨28

are independent connectives that are not inter-definable in intuitionistic propositional logic29

(IPL). In contrast to □, however, the logical properties of ♢ vary widely in IML literature.30

This has misconstrued ♢ as a controversial and unstable modality. It had been incorrectly31

assumed until recently that several IMLs with both □ and ♢ coincided (i.e. were conservative32

extensions of their sublogics) only in the ♢-free fragment, suggesting some sort of stability of33

□-only logics. Fortunately, misconceptions around intuitionistic diamonds have been broken34

in recent results [16, 18] and we are approaching a better understanding of it.35

Advances in IML have led to a plethora of useful applications in programming lan-36

guages through the development of corresponding type theories with modalities. Modal37

lambda calculi [32, 13] with box modalities have found applications in staged meta-program-38

ming [17, 31, 23], reactive programming [5], safe usage of temporal resources [2] and checking39

productivity of recursive definitions [10]. Two particular box axioms that have received40

plenty of attention in these developments are the axioms T : □A ⇒ A and 4 : □A ⇒ □□A.41

Dual-context modal calculi [32, 24] which admit one or both of these axioms are well-under-42

stood. These calculi enjoy a rich meta-theory, including confluent reduction, normalization43

and a comprehensive analysis of provability. Fitch-style modal lambda calculi [13] admit-44

ting axioms T and 4 further enjoy an elegant categorical interpretation, possible-world45
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23:2 Lax Modal Lambda Calculi

semantics, and results showing how categorical models of these calculi can be constructed46

using possible-world semantics of their corresponding logics [37].47

Lambda calculi with diamond modalities in comparison have received much less attention48

from the type-theoretic perspective. The controversy surrounding the diamond modality49

in IML appears to have restricted the development of type theories with diamonds. For50

example, Kavvos [25] cites Simpson’s survey [35] of IMLs and restricts the development51

of dual-context modal calculi “to the better-behaved, and seemingly more applicable box52

modality” arguing that the “computational interpretation [of ♢] is not very crisp”. Recent53

breakthroughs in intuitionistic modal logic have made it clear that diamonds are no more54

problematic than boxes. In this article, we further the type-theoretic account of a special55

class of diamond modalities with compelling applications in programming languages.56

Propositional lax logic, or simply lax logic (LL), is an intuitionistic modal logic introduced57

independently by Fairtlough and Mendler [20] and Benton, Bierman and de Paiva [7]. LL58

extends IPL with a diamond modality ♢, known as the lax modality, which exhibits a peculiar59

modal axiom S (for “strength”), in addition to axioms R (for “return”) and J (for “join”)60

that are well-known as classical duals to the box axioms T and 4 respectively.61

S : A × ♢B ⇒ ♢(A × B) R : A ⇒ ♢A J : ♢♢A ⇒ ♢A62

It is known that LL corresponds to a typed-lambda calculus (we call λLL) known as Moggi’s63

monadic metalanguage [30], which models side effects in functional programming using strong64

monads from category theory. Benton, Bierman and de Paiva [7], and later Pfenning and65

Davies [32], show that a judgement is provable in a natural deduction proof system for LL if66

and only if there exists a typing derivation for its corresponding judgement in λLL. However,67

in contrast to the comprehensive treatment of box modalities mentioned above, there remain68

several gaps in our understanding of the lax modality:69

1. It has remained unclear as to whether type theories can exist for sublogics of LL or70

whether the axioms of LL in combination happen to coincidentally enjoy a status of71

“well-behavedness”. What happens if we drop one or more of the modal axioms R and J?72

Does a corresponding type theory still exist?73

2. A satisfactory account of the correspondence between the possible-world semantics of LL74

and the categorical semantics of λLL is still missing. In particular, how can we leverage75

the possible-world semantics of LL to construct models of λLL?76

The first objective of this article is to develop corresponding type theories for sublogics77

of LL that drop one or both of axioms R and J. From the type-theoretic perspective,78

this corresponds to type theories for non-monadic strong functors, which are prevalent in79

functional programming. For example, in Haskell, the array data type (in Data.Array) is80

a strong functor that neither exhibits return (axiom R) nor join (axiom J). Several other81

Haskell data types exhibit return1 or join2, but not both3. We are interested in developing a82

uniform modal logical foundation for the axioms of non-monadic strong functors.83

The second objective of this article is to study the connection between possible-world84

semantics of LL and its sublogics and categorical models of their corresponding type theories.85

Possible-world semantics for logics are concerned with provability of formulas and not about86

proofs themselves. Categorical models of lambda calculi, on the other hand, distinguish87

1 https://hackage.haskell.org/package/pointed-5.0.5/docs/Data-Pointed.html
2 https://hackage.haskell.org/package/semigroupoids-6.0.1/docs/Data-Functor-Bind.html#g:4
3 https://wiki.haskell.org/Why_not_Pointed%3F

https://hackage.haskell.org/package/pointed-5.0.5/docs/Data-Pointed.html
https://hackage.haskell.org/package/semigroupoids-6.0.1/docs/Data-Functor-Bind.html#g:4
https://wiki.haskell.org/Why_not_Pointed%3F
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different proofs (terms) of the same proposition (type). Mitchell and Moggi [29] show the88

connection between these two different semantics using a categorical refinement of possible-89

world semantics for the simply-typed lambda calculus (STLC). They note that their refined90

semantics, which we shall call proof-relevant possible-world semantics, makes it “easy to91

devise Kripke counter-models” since they “seem to support a set-like intuition about lambda92

terms better than arbitrary cartesian closed categories”. We wish to achieve this technical93

convenience in model construction for all the modal lambda calculi in this article.94

In this article, towards our first objective, we formulate three new modal lambda calculi as95

subsystems of λLL: λSL, λSRL, λSJL. The calculus λSL models strong functors and corresponds96

to a logic SL (for “S-lax Logic”) that admits axiom S, but neither R nor J. The calculus λSRL97

models strong pointed functors and corresponds to a logic SRL (for “SR-lax Logic”) that98

admits axioms S and R, but not J. The calculus λSJL models strong semimonads and99

corresponds to a logic SJL (for “SJ-lax Logic”) that admits axioms S and J, but not R. We100

refer to all four calculi collectively as lax modal lambda calculi. Towards our second objective,101

we extend Mitchell and Moggi’s proof-relevant possible-world semantics to lax modal lambda102

calculi and show that it is complete for their equational theories. We further show that all103

four calculi are normalizing by constructing Normalization by Evaluation models as instances104

of possible-world semantics and prove completeness and inadmissibility results as corollaries.105

All the theorems in this paper have been verified using the proof assistant Agda [1] and the106

formalization can be found at: https://anonymous.4open.science/r/s-C71D/README.md.107

2 Overview of LL and its corresponding lambda calculus λLL108

In this section, we will define the syntax and semantics of LL and its sublogics that extend109

the so-called negative, i.e. disjunction and absurdity-free, fragment of IPL. This section is a110

recap of known results from previously published work alongside a discussion of technical111

background presumed in the rest of this article.112

2.1 Syntax and semantics of LL113

Syntax. The language of (the negative fragment of) LL consists of formulas defined inductively114

by propositional atoms (p, q, r, etc.), a constant ⊤ and logical connectives ×, ⇒ and ♢.115

Prop A, B := p, q, r, . . . | ⊤ | A × B | A ⇒ B | ♢A Ctx Γ, ∆ := · | Γ, A116

The constant ⊤ denotes universal truth, the binary connectives × and ⇒ respectively denote117

conjunction and implication, and the unary connective ♢ denotes the lax modality. Intuitively,118

a formula ♢A may be understood as qualifying the truth of formula A under some constraint.119

A context Γ is a multiset of formulas A1, A2, ..., An, where · denotes the empty context.120

A Hilbert-style axiomatisation of LL can be given by extending the usual axioms and121

rules of deduction for IPL with the modal axioms S, R, and J in Section 1.122

Semantics. The possible-world semantics of LL defines the truth of LL-formulas in a model123

using gadgets known as frames. An LL-frame F = (W, Ri, Rm) is a triple that consists of a124

set W of worlds and two reflexive transitive relations Ri (for “intuitionistic”) and Rm (for125

“modal”) on worlds satisfying two compatibility conditions:126

Forward confluence: Ri
−1; Rm ⊆ Rm; Ri

−1
127

Inclusion: Rm ⊆ Ri128

The relation Ri
−1 is the converse of Ri and ; denotes composition of relations. The composite129

of two binary relations R1 and R2 on worlds is defined as R1; R2 = {(x, z) | there exists y ∈130

W such that (x, y) ∈ R1 and (y, z) ∈ R2}.131

CVIT 2016
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23:4 Lax Modal Lambda Calculi

We may intuitively understand worlds as nodes in a graph denoting the “state of as-132

sumptions”, relation Ri as paths denoting increase in assumptions, and relation Rm as paths133

denoting constraining of assumptions. That is, w Ri w′ denotes the increase in assumptions134

from world w to w′, and w Rm v denotes a constraining of w by v such that v is reachable135

from w when the constraint can be satisfied. The inclusion condition Rm ⊆ Ri means136

imposing a constraint increases assumptions.137

w v

w′ v′

Rm

Ri Ri

Rm

The forward confluence condition Ri
−1; Rm ⊆ Rm; Ri

−1
138

states that constraints can be “transported” over an increase139

in assumptions. It can be visualized as depicted on the right,140

where the dotted lines represent “there exists”. This condition141

does not appear in Fairtlough and Mendler’s original work [20],142

but can be found in earlier work on intuitionistic diamonds143

by Božić and Došen [12, §8] and Plotkin and Stirling [33]. It144

simplifies the interpretation of ♢ and is satisfied by all the145

models we will construct in this article to prove completeness.146

We return to the discussion on forward confluence in Section 6.147

A model M = (F, V ) couples a frame F with a valuation function V that assigns to each148

propositional atom p a set V (p) of worlds hereditary in Ri, i.e. if w Ri w′ and w ∈ V (p) then149

w′ ∈ V (p). The truth of a formula in a model M is defined by the satisfaction relation ⊩ for150

a given world w ∈ W by induction on a formula as:151

M, w ⊩ p iff w ∈ V (p)
M, w ⊩ ⊤ iff true
M, w ⊩ A × B iff M, w ⊩ A and M, w ⊩ B

M, w ⊩ A ⇒ B iff for all w′ ∈ W such that w Ri w′, M, w′ ⊩ A implies M, w′ ⊩ B

M, w ⊩ ♢A iff there exists v ∈ W with w Rm v and M, v ⊩ A

152

We write M |= A to mean M, w ⊩ A at all worlds w, and M |= Γ to mean that M |= Ai for153

all formulas Ai with 1 ≤ i ≤ n in context Γ = A1, ...An. Furthermore, we write Γ |= A to154

mean M |= Γ implies M |= A for all models M.155

The soundness of the semantics of LL can be shown using the following key properties:156

▶ Proposition 1. Given an arbitrary model M = (F, V ) of LL157

if w Ri w′ and M, w ⊩ A then M, w′ ⊩ A, for all worlds w, w′ and formulas A158

M |= A × ♢B ⇒ ♢(A × B) for all worlds w and formulas A, B159

M |= A ⇒ ♢A for all worlds w and formulas A160

M |= ♢♢A ⇒ ♢A for all worlds w and formulas A161

Proof. The first property, known as the monotonicity lemma states that the truth of an162

arbitrary formula is retained as knowledge increases. This lemma is proved as usual by163

induction on formulas, using the forward confluence condition for the case of ♢A. The164

remaining properties are shown using the definition of the satisfaction clause by respectively165

using the inclusion condition Rm ⊆ Ri, reflexivity of Rm, and transitivity of Rm ◀166

2.2 Syntax and semantics of λLL167

Syntax. The monadic meta-language, or λLL, was developed by Moggi [30] independently168

before LL. The calculus λLL can be presented as an extension of STLC featuring cartesian169

products with a unary type constructor ♢ that exhibits axioms S, R and J.170

Ty A, B := ι | ⊤ | A × B | A ⇒ B | ♢A Ctx Γ, ∆ := · | Γ, A171
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The type ι denotes an uninterpeted base type (i.e. a ground type with no specific operations),172

⊤ denotes the unit type, A × B denotes product types, and A ⇒ B denotes function types. A173

type ♢A denotes a computation that performs some side-effects to return a value of type A.174

A context Γ is a list of formulas A1, A2, ..., An and · denotes the empty context.175

The terms, typing rules and equational theory of λLL are defined in Figure 1. The176

judgements Γ ⊢ t : A define intrinsically well-typed terms of λLL and judgements Γ ⊢ t ∼ t′ : A177

define well-typed equations. We define well-typed (and scoped) variables using de Bruijn178

indices as judgments Γ ⊢var v : A with constructs zero and succ. For the sake of readability179

we will write terms using named variables as λ x. λ y. x instead of λ λ (var (succ zero)).180

Admissibility. The notation t[u] denotes the substitution of term u in t for the variable zero,
and the notation wk t denotes the weakening of a term Γ ⊢ t : A by embedding it into a larger
context Γ ≤ Γ′ as Γ′ ⊢ wk t : A. Both of the following rules are admissible in the calculus.

Subst
Γ, A ⊢ t : B Γ ⊢ u : A

Γ ⊢ t[u] : B

Wk
Γ ⊢ t : A Γ ≤ Γ′

Γ′ ⊢ wk t : A

Crucially, the modal axioms S, R and J are derivable in λLL as shown below. We write181

“letLL x = t in u” with an explicit variable binding instead of “letLL t u” with de Bruijn indices.182

· ⊢ λ x. letLL y = snd x in (returnLL (pair (fst x) y)) : A × ♢B ⇒ ♢(A × B)183

· ⊢ λ x. returnLL x : A ⇒ ♢A184

· ⊢ λ x. letLL y = x in (letLL z = y in returnLL z) : ♢♢A ⇒ ♢A185

Semantics. The semantics of LL is given using categories. A categorical model of λLL186

is a cartesian-closed category equipped with a strong monad ♢ (defined in Appendix A).187

Given a categorical model C of λLL, we interpret types and contexts in λLL as C-objects188

and terms Γ ⊢ t : A as C-morphisms JtK : JΓK → JAK by induction on types and terms189

respectively. The interpretation of the term constructs returnLL and letLL (and in turn the190

modal axioms S, R and J) in a model of λLL is given by the structure of the strong monad ♢.191

We refer the reader to the accompanying Agda mechanization for further details.192

▶ Proposition 2 (Categorical semantics for λLL). Given two terms t, u in λLL, Γ ⊢ t ∼ u : A193

if and only if for all categorical models C of λLL JtK = JuK : JΓK → JAK in C.194

Proof. Follows by induction on the judgment Γ ⊢ t ∼ u : A in one direction, and by a term195

model construction (see for e.g., [13, Section 3.2]) in the converse. ◀196

2.3 Sublogics SL, SRL and SJL and corresponding lambda calculi197

We now define the three new sublogics of LL of interest in this paper, namely SL, SRL and198

SJL, by specifying their respective Hilbert-style axiomatisation and possible-world semantics.199

The logic SL can be axiomatised by extending the usual axioms and rules of IPL with the200

modal axiom S. Furthermore, we axiomatise:201

the logic SRL by extending SL with axiom R202

the logic SJL by extending SL with axiom J203

the logic LL by extending SL with axioms R and J (as defined previously)204

The semantics for SL, SRL and SJL is given as before for LL by restricting the definitions205

of frames. An SL-frame F = (W, Ri, Rm) is a triple that consists of a set W of worlds, a206

reflexive transitive relation Ri, and a relation Rm (that need not be reflexive or transitive),207

satisfying the forward confluence and inclusion conditions. Furthermore, an SL-frame is208

an SRL-frame when Rm is reflexive209

CVIT 2016



23:6 Lax Modal Lambda Calculi

Var-Zero
Γ, A ⊢var zero : A

Var-Succ
Γ ⊢var v : A

Γ, B ⊢var succ v : A

Var
Γ ⊢var v : A

Γ ⊢ var v : A

⊤-Intro
Γ ⊢ unit : ⊤

×-Intro
Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ pair t u : A × B

×-Elim-1
Γ ⊢ t : A × B

Γ ⊢ fst t : A

×-Elim-2
Γ ⊢ t : A × B

Γ ⊢ snd t : B

⇒-Intro
Γ, A ⊢ t : B

Γ ⊢ λ t : A ⇒ B

⇒-Elim
Γ ⊢ t : A ⇒ B Γ ⊢ u : A

Γ ⊢ app t u : B

LL/♢-Return
Γ ⊢ t : A

Γ ⊢ returnLL t : ♢A

LL/♢-Let
Γ ⊢ t : ♢A Γ, A ⊢ u : ♢B

Γ ⊢ letLL t u : ♢B

⊤-η
Γ ⊢ t : ⊤

Γ ⊢ t ∼ unit : ⊤

×-η
Γ ⊢ t : A × B

Γ ⊢ t ∼ pair (fst t) (snd t) : A × B

×-β1

Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ fst (pair t u) ∼ t : A

×-β2

Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ snd (pair t u) ∼ u : B

⇒-η
Γ ⊢ t : A ⇒ B

Γ ⊢ t ∼ λ (app (wk t) (var zero)) : A ⇒ B

⇒-β
Γ, A ⊢ t : B Γ ⊢ u : A

Γ ⊢ app (λ t) u ∼ t[u] : B

LL/♢-β
Γ ⊢ t : A Γ, A ⊢ u : ♢B

Γ ⊢ letLL (returnLL t) u ∼ u[t] : ♢B

LL/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letLL t (returnLL (var zero)) : ♢A

LL/♢-ass
Γ ⊢ t : ♢A Γ, A ⊢ u : ♢B Γ, B ⊢ u′ : ♢C

Γ ⊢ letLL (letLL t u) u′ ∼ letLL t (letLL u (wk u′)) : ♢C

Figure 1 Well-typed terms and equational theory for λLL

an SJL-frame when Rm is transitive210

an LL-frame when Rm is reflexive and transitive (as defined previously)211

In the upcoming section, we will define corresponding lax modal lambda calculi for each212

of these sublogics (Section 3). We develop proof-relevant possible-world semantics for lax213

modal calculi and show the connection to categorical semantics by studying the properties214

of presheaf categories determined by proof-relevant frames (Section 4). We leverage this215

connection to then construct Normalization by Evaluation models for the calculi, and show216

as corollaries completeness and inadmissibility theorems (Section 5).217

3 The Calculi λSL, λSRL and λSJL218

The calculi λSL, λSRL and λSJL are defined as before with λLL as extensions of STLC with a219

unary type constructor ♢. The types and contexts of all four calculi are defined alike.220
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SL/♢-Letmap
Γ ⊢ t : ♢A Γ, A ⊢ u : B

Γ ⊢ letmapSL t u : ♢B

SL/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letmapSL t (var zero) : ♢A

SL/♢-β
Γ ⊢ t : ♢A Γ, A ⊢ u : B Γ, B ⊢ u′ : C

Γ ⊢ letmapSL (letmapSL t u) u′ ∼ letmapSL t (u′[u]) : ♢C

Figure 2 Well-typed terms and equational theory for λSL (omitting those of STLC)

The calculus λSL. The terms, typing rules and equational theory of the modal fragment
of λSL is defined in Figure 2. λSL extends STLC with a construct letmapSL and two new
equations SL/♢-η and SL/♢-β. Observe that the typing rule for letmapSL in λSL differs from
letLL in λLL: a term letmapSL t u “maps” a term Γ, A ⊢ u : B over a term Γ ⊢ t : ♢A to yield
a term of type ♢B in context Γ. This difference disallows a derivation of axiom J, while
allowing a derivation of axioms S as shown below:

· ⊢ λ x. letmapSL y = snd x in (pair (fst x) y) : A × ♢B ⇒ ♢(A × B)

Since there is no counterpart to returnLL in λSL, axiom R cannot be derived in λSL.221

A categorical model of λSL is a cartesian-closed category equipped with a strong functor ♢222

(that need not be a monad). Given a categorical model C of λSL, we interpret types and223

contexts in λSL as C-objects and terms Γ ⊢ t : A as C-morphisms JtK : JΓK → JAK as before224

with λLL by induction on types and terms respectively. The interpretation of the term225

construct letmapSL (and in turn the modal axiom S) is given by the tensorial strength of226

functor ♢, which gives us a morphism X × ♢Y → ♢(X × Y ) for all objects X, Y in C.227

▶ Proposition 3 (Categorical semantics for λSL). Given two terms t, u in λLL, Γ ⊢ t ∼ u : A228

if and only if for all categorical models C of λSL JtK = JuK : JΓK → JAK in C.229

The calculus λSRL. The terms, typing rules and equational theory for the modal frag-
ment of λSRL are defined in Figure 3. λSRL extends STLC with two constructs returnSRL
and letmapSRL, and three new equations SRL/♢-η, SRL/♢-β1 and SRL/♢-β2. Observe that
the typing rule for letmapSRL is identical to letmapSL and axiom S can be derived in λSRL
exactly as above in λSL:

· ⊢ λ x. letmapSRL y = snd x in (pair (fst x) y) : A × ♢B ⇒ ♢(A × B)

Axiom R can as well be derived since the typing rule of returnSRL is identical to returnLL.

· ⊢ λ x. returnSRL x : A ⇒ ♢A

Axiom J, on the other hand, cannot be derived in λSRL.230

A categorical model of λSRL is a cartesian-closed category equipped with a strong pointed231

functor ♢. The term construct letmapSRL (and in turn axiom S) is interpreted in a model C232

of λSRL using the tensorial strength of functor ♢, as before with λSL. The interpretation of233

the term construct returnSRL (and in turn axiom R) is given by the pointed structure of the234

functor ♢, which gives us a morphism X → ♢X for all objects X in C.235

▶ Proposition 4 (Categorical semantics for λSRL). Given two terms t, u in λSRL, Γ ⊢ t ∼ u : A236

if and only if for all categorical models C of λSRL JtK = JuK : JΓK → JAK in C.237

CVIT 2016
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SRL/♢-Return
Γ ⊢ t : A

Γ ⊢ returnSRL t : ♢A

SRL/♢-Letmap
Γ ⊢ t : ♢A Γ, A ⊢ u : B

Γ ⊢ letmapSRL t u : ♢B

SRL/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letmapSRL t (var zero) : ♢A

SRL/♢-β1

Γ ⊢ t : ♢A Γ, A ⊢ u : B Γ, B ⊢ u′ : C

Γ ⊢ letmapSRL (letmapSRL t u) u′ ∼ letmapSRL t (u′[u]) : ♢C

SRL/♢-β2

Γ ⊢ t : A Γ, A ⊢ u : B

Γ ⊢ letmapSRL (returnSRL t) u ∼ returnSRL (u[t]) : ♢B

Figure 3 Well-typed terms and equational theory for λSRL (omitting those of STLC)

The calculus λSJL. The terms, typing rules and equational theory are defined for the modal238

fragment of λSJL in Figure 4. λSJL extends STLC with two constructs letmapSJL and letSJL,239

and five equations SJL/♢-η, SJL/♢-β1, SJL/♢-η2, SJL/♢-com and SJL/♢-ass.240

Observe that the typing rule for letmapSJL is identical to letmapSL and axiom S can be
derived in λSJL exactly as before in λSRL and λSL:

· ⊢ λ x. letmapSJL y = snd x in (pair (fst x) y) : A × ♢B ⇒ ♢(A × B)

Axiom J can be derived in λSJL using a combination of letmapSJL and letSJL as:

· ⊢ λ x. letSJL y = x in (letmapSJL z = y in z) : ♢♢A ⇒ ♢A

Axiom R, however, cannot be derived in λSJL.241

A categorical model of λSJL is a cartesian-closed category equipped with a strong semi-242

monad ♢. We interpret the term construct letmapSJL (and in turn axiom S) in a categorical243

model C of λSJL, using the tensorial strength of functor ♢ as before with λSL and λSRL. The244

interpretation of the term construct letSJL (and in turn axiom J) is given by the semimonad245

structure of functor ♢, which gives us a morphism ♢♢X → ♢X for all objects X in C.246

▶ Proposition 5 (Categorical semantics for λSJL). Given two terms t, u in λSJL, Γ ⊢ t ∼ u : A247

if and only if for all categorical models C of λSJL JtK = JuK : JΓK → JAK in C.248

4 Proof-relevant possible-world semantics249

Possible-world semantics is typically given for a logic in a classical meta-language using250

sets and relations, as in Section 2. In this section, we are concerned with possible-world251

semantics for lambda calculi, for which we will instead work in a constructive dependent252

type-theory based on Agda. We will use a type X : Type in place of a set X and values x : X253

in place of elements x ∈ X. The arrow → denotes functions, and quantifications ∀x and Σx254

denote universal and existential quantification respectively, where x : X is an element of some255

type X : Type that is left implicit. A value of type ∀x. P (x) for some predicate P : X → Type256

is a function λx. p with p : P (x). A value of type Σx. P (x) is a tuple (x, p), but we will leave257

the witness x implicit at times and write (_, p) or simply p for brevity.258
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SJL/♢-Letmap
Γ ⊢ t : ♢A Γ, A ⊢ u : B

Γ ⊢ letmapSJL t u : ♢B

SJL/♢-Let
Γ ⊢ t : ♢A Γ, A ⊢ u : ♢B

Γ ⊢ letSJL t u : ♢B

SJL/♢-η
Γ ⊢ t : ♢A

Γ ⊢ t ∼ letmapSJL t (var zero) : ♢A

SJL/♢-β1

Γ ⊢ t : ♢A Γ, A ⊢ u : B Γ, B ⊢ u′ : C

Γ ⊢ letmapSJL (letmapSJL t u) u′ ∼ letmapSJL t (u′[u]) : ♢C

SJL/♢-β2

Γ ⊢ t : ♢A Γ, A ⊢ u : B Γ, B ⊢ u′ : ♢C

Γ ⊢ letSJL (letmapSJL t u) u′ ∼ letSJL t (u′[u]) : ♢C

SJL/♢-com
Γ ⊢ t : ♢A Γ, A ⊢ u : ♢B Γ, B ⊢ u′ : C

Γ ⊢ letmapSJL (letSJL t u) u′ ∼ letSJL t (letmapSJL u (wk u′)) : ♢C

SJL/♢-ass
Γ ⊢ t : ♢A Γ, A ⊢ u : ♢B Γ, B ⊢ u′ : ♢C

Γ ⊢ letSJL (letSJL t u) u′ ∼ letSJL t (letSJL u (wk u′)) : ♢C

Figure 4 Well-typed terms and equational theory for λSJL (omitting those of STLC)

Semantics for λSL. A proof-relevant λSL-frame F = (W, Ri, Rm) is a triple that consists of a259

type W : Type of worlds and two proof-relevant relations Ri, Rm: W → W → Type with260

functions refli : ∀w. w Ri w and transi : ∀w, w′, w′′. w Ri w′ → w′ Ri w′′ → w Ri w′′
261

respectively proving the reflexivity and transitivity of Ri such that262

transi refli i = i and transi i refli = i263

transi (transi i i′) i′′ = transi i (transi i′ i′′)264

function factor : ∀w, w′, v. w Ri w′ → w Rm v → Σv′ . (w′ Rm v′ × v Ri v′) such that265

factor refli m = (m, refli)266

factor (transi i1 i2) m = (m′
2, (transi i′

1 i′
2))267

where (i′
1, m′

1) = factor i1 m and (i′
2, m′

2) = factor i2 m′
1.268

function incl : ∀w, v. w Rm v → w Ri v, such that269

transi i (incl m′) = transi (incl m) i′, where (i′, m′) = factor i m270

The function refli and transi are the proof-relevant encoding of reflexivity and transitivity271

of Ri respectively. These functions are subject to the accompanying coherence laws, which272

state that the proof computed by refli must be the unit of transi , i.e. Ri must form a273

category Wi . The coherence laws facilitate a sound interpretation of λSL’s equational theory.274

The functions factor and incl are proof-relevant encodings of the forward confluence275

(Ri
−1; Rm ⊆ Rm; Ri

−1) and inclusion (Rm ⊆ Ri) conditions respectively. Given a proof of276

w Ri w′ (i.e. w′ Ri
−1 w) and w Rm v, factor returns a pair of proofs for some world v′:277
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w′ Rm v′ and v Ri v′ (i.e. v′ Ri
−1 v). Similarly, given a proof of w Rm v, incl returns a278

proof of w Ri v. These functions are also accompanied by the stated coherence laws.279

The proof-relevant relation Ri in a λSL-frame determines a category Wi whose objects are280

given by worlds and morphisms by proofs of Ri, with refli witnessing the identity morphisms281

and transi witnessing the composition of morphisms. This determines a category Ŵi of282

covariant presheaves indexed by Wi . The objects in the category Ŵi are presheaves and the283

morphisms are natural transformations. A presheaf P is given by a family of meta-language284

types Pw : Type indexed by worlds w : W , accompanied by “weakening” functions wk :285

∀w, w′. w Ri w′ → Pw → Pw′ subject to certain conditions. A natural transformation f :286

P
·−→ Q is a family of functions ∀w. Pw → Qw subject to a naturality condition.287

▶ Proposition 6 (♢ Strong Functor). The presheaf category Ŵi determined by a λSL-frame288

exhibits a strong endofunctor (♢P )w = Σv. w Rm v × Pv for some world w and presheaf P .289

Proof. The function factor defines the presheaf action of ♢P and the coherence conditions290

on factor (e.g., factor refli m = (m, refli)) prove the presheaf conditions. The functorial action291

of ♢ on a natural transformation f : ∀w. Pw → Qw is defined by applying f at the world v292

witnessing the Σ quantification. The functorial laws of ♢ follow immediately and the strength293

of ♢ is given by the function incl and the coherence laws that accompany it. ◀294

Propositions 3 and 6 give us that Ŵi is a categorical model of λSL. For clarity, we elaborate295

on this consequence by giving a direct interpretation of λSL in Ŵi .296

A proof-relevant possible-world model M = (F, V ) couples a proof-relevant frame F with297

a valuation function V that assigns to a base type ι a presheaf Vι : W → Type. Given such298

a model, the types in λSL are interpreted as presheaves, i.e. we interpret a type A as a299

family JAKw : Type indexed by an arbitrary world w : W—as shown on the left below.300

Jι Kw = Vι,w

JA × B Kw = JAKw × JBKw

JA ⇒ BKw = ∀w′. w Ri w′ → JAKw′ → JBKw′

J♢A Kw =
∑

v . w Rm v × JAKv

J−K : Γ ⊢ A → (∀w. JΓKw → JAKw)
Jvar v K γ = lookup v γ

Junit K γ = ()
Jpair t u K γ = (JtK γ, JuK γ)
Jfst t K γ = π1(JtK γ)
Jsnd t K γ = π2(JtK γ)
Jλ t K γ = λi. λa. JtK (wk i γ, a)
Japp t u K γ = (JtK γ) refli (JuK γ)
JletmapSL t uK γ = (m, JuK (wk (incl m) γ, x))

where (m : w Rm v, x : JAKv) = JtK γ

301

The interpretation of the base type ι is given by the valuation function V , and the302

unit, product and function types are interpreted as usual using their semantic counterparts.303

We interpret the ♢ modality using the proof-relevant quantifier
∑

: the interpretation of a304

type ♢A at a world w is given by the interpretation of A at some modal future world v along305

with a proof of w Rm v witnessing the connection from w to v via Rm. The typing contexts306

are interpreted as usual by taking the cartesian product of presheaves.307

The terms in λSL are interpreted as natural transformations by induction on the typing308

judgment. Interpretation of STLC terms follows the usual routine: we interpret variables by309

projecting the environment γ : JΓKw using a function lookup, the unit and pair constructs (unit,310

pair, fst, snd) with their semantic counterparts ((), (−, −), π1, π2), and the function con-311

structs (λ,app) with semantic function abstraction and application. The interesting case is312

that of letmapSL: given terms Γ ⊢ t : ♢A and Γ, A ⊢ u : B, and an environment γ : JΓKw, we313

must produce an element of type J♢BKw =
∑

v . w Rm v × JBKv. Recursively interpreting t314
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gives us a pair (m : w Rm v, x : JAKv), using the former of which we transport γ along Rm315

to the world v, as wkΓ (incl m) γ : JΓKv, which is in turn used to recursively interpret u, thus316

obtaining the desired element of type JBKv.317

Semantics for λSRL. A proof-relevant λSRL-frame (W, Ri, Rm) is a λSL-frame that exhibits:318

function reflm : ∀w. w Rm w, such that319

factor i reflm = (reflm, i)320

incl reflm = refli321

▶ Proposition 7 (♢ Strong Pointed). The strong functor ♢ on the category of presheaves Ŵi322

determined by a λSRL-frame is strong pointed.323

Proof. To show that ♢ is pointed, we define point : P
·−→ ♢P using function reflm, and then use324

the coherence law incl reflm = refli to show that point is a strong natural transformation. ◀325

The interpretation of the modal fragment of λSRL can be explicitly given as:326

JreturnSRL t K γ = (reflm, JtK γ)
JletmapSRL t uK γ = (m, JuK (wk (incl m) γ, x))

where (m : w Rm v, x : JAKv) = JtK γ

327

Semantics for λSJL. A proof-relevant λSJL-frame (W, Ri, Rm) is a λSL-frame that exhibits:328

function transm : ∀u, v, w. u Rm v → v Rm w → u Rm w, such that329

factor i (transm m1 m2) = (transm m′
1 m′

2, i′
2)330

where (i′
1, m′

1) = factor i m1 and (i′
2, m′

2) = factor i′
1 m′

1.331

transm (transm m1 m2) m3 = transm m1 (transm m2 m3)332

incl (transm m1 m2) = transi (incl m1) (incl m2)333

▶ Proposition 8 (♢ Strong Semimonad). The strong functor ♢ on the category of presheaves Ŵi334

determined by a λSJL-frame is a strong semimonad.335

Proof. We define µ : ♢♢P
·−→ ♢P using the function transm to show ♢ is a semimonad, and336

then use the coherence law incl (transm m1 m2) = transi (incl m1) (incl m2) to show that µ is337

a strong natural transformation—giving us that µ is a strong semimonad. ◀338

The interpretation of the modal fragment of λSJL can be explicitly given as:339

JletmapSJL t uK γ = (m, JuK (wk (incl m) γ, x))
where (m : w Rm v, x : JAKv) = JtK γ

JletSJL t u K γ = (transm m m′, y)
where (m : w Rm v, x : JAKv) = JtK γ

(m′ : v Rm v′, y : JBKv′) = JuK (wk (incl m) γ, x)

340

Semantics for λLL. A proof-relevant λLL-frame F = (W, Ri, Rm) is both an λSRL-frame and341

λSJL-frame that further exhibits the unit laws transm reflm m = m and transm m reflm = m.342

That is, proofs of Rm now form a category Wm with a functor Wm → Wi given by function incl .343

▶ Proposition 9 (♢ Strong Monad). The strong functor ♢ on the category of presheaves Ŵi344

determined by a λLL-frame is a strong monad.345

Proof. We apply Propositions 6–8 to show that the functor ♢ is a strong pointed semimonad.346

We then use the unit laws of the category Wm to prove the unit laws of the monad ♢. ◀347
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Ne/Var
Γ ⊢var v : A

Γ ⊢ne var v : A

Nf/Up
Γ ⊢ne n : ι

Γ ⊢nf up n : ι

Nf/Unit
Γ ⊢nf unit : ⊤

Ne/×-Elim-1
Γ ⊢ne n : A × B

Γ ⊢ne fst n : A

Ne/×-Elim-2
Γ ⊢ne n : A × B

Γ ⊢ne snd n : B

Nf/×-Intro
Γ ⊢nf n : A Γ ⊢nf m : B

Γ ⊢nf pair n m : A × B

Nf/⇒-Intro
Γ, A ⊢nf n : B

Γ ⊢nf λ n : A ⇒ B

Ne/⇒-Elim
Γ ⊢ne n : A ⇒ B Γ ⊢nf m : A

Γ ⊢ne app n m : B

NF/♢-Letmap/SL
Γ ⊢ne n : ♢A Γ, A ⊢nf m : B

Γ ⊢nf letmapSL n m : ♢B

Figure 5 Neutral terms and Normal forms for λSL

The interpretation of the modal fragment of λLL can be explicitly given as:348

JreturnLL tK γ = (reflm, JtK γ)
JletLL t u K γ = (transm m m′, y)

where (m : w Rm v, x : JAKv) = JtK γ

(m′ : v Rm v′, y : JBKv′) = JuK (wk (incl m) γ, x)

349

▶ Theorem 10 (Soundness of proof-relevant possible-world semantics). For any two terms Γ ⊢350

t, u : A in λSL/λSRL/λSJL/λLL, if Γ ⊢ t ∼ u : A then JtK = JuK for an arbitrary proof-relevant351

possible-world model determined by the respective λSL/λSRL/λSJL/λLL-frames.352

Proof. Applying Propositions 6–9 respectively to Propositions 2–5 gives us that the cat-353

egory Ŵi determined by a λSL/λSRL/λSJL/λLL-frame is a categorical model of the respective354

calculus. As a result, we get the soundness of the equational theory for possible-world models355

via soundness of the equational theory for categorical models. ◀356

5 Normalization, Completeness and Inadmissibility results357

Catarina Coquand [14, 15] proved normalization for STLC in the proof assistant Alf [28] by358

constructing an instance of Mitchell and Moggi’s proof-relevant possible-world semantics. This359

model-based approach to normalization, known as Normalization by Evaluation (NbE) [9, 8],360

dispenses with tedious syntactic reasoning that typically complicate normalization proofs. In361

this section, we extend Coquand’s result to lax modal lambda calculi and observe corollaries362

including completeness and inadmissibility of irrelevant modal axioms.363

The objective of NbE is to define a function norm : Γ ⊢ A → Γ ⊢nf A, assigning a364

normal form to every term in the calculus. We write Γ ⊢ A to denote all terms Γ ⊢ t : A365

and Γ ⊢nf A to denote all normal forms Γ ⊢nf n : A. Normal forms are defined as usual366

alongside judgements Γ ⊢ne n : A denoting neutral terms, which can be understood as367

“straight-forward” inferences that do not involve introduction rules.368

To define norm for λSL, we construct a possible-world model (N, V ), known as the NbE
model, with a λSL-frame N = (Ctx , ≤,◁SL) consisting of contexts for worlds, the weakening
relation ≤ for Ri and the accessibility relation ◁SL for Rm. The valuation is given by neutral
terms as Vι,Γ = Γ ⊢ne ι. The relations ≤ and ◁SL on contexts are defined inductively as



N. Valliappan 23:13

follows. The latter definition states that Γ ◁SL ∆ if and only if ∆ ≡ Γ, A for some type A

such that there exists a neutral term Γ ⊢ n : ♢A.

base : · ≤ ·
i : Γ ≤ Γ′

dropA i : Γ ≤ Γ′, A

i : Γ ≤ Γ′

keepA i : Γ, A ≤ Γ′, A

Γ ⊢ne n : ♢A

single n : Γ ◁SL Γ, A

The proof-relevant relation ◁SL is neither reflexive nor transitive, but is included in the369

≤ relation since we can define a function incl : ∀Γ, ∆. Γ ◁SL ∆ → Γ ≤ ∆. We can370

also show that the λSL-frame N satisfies the forward confluence condition by defining a371

function factor : ∀Γ, Γ′, ∆. Γ ≤ Γ′ → Γ ◁SL ∆ → ∃∆′. (Γ′ ◁SL ∆′ × ∆ ≤ ∆′).372

By construction, we obtain an interpretation of terms J−K : Γ ⊢ A → (∀∆. JΓK∆ → JAK∆)373

in the NbE model as an instance of the generic interpreter for an arbitrary possible-world374

model (Section 4). This model exhibits two type-indexed functions characteristic of NbE375

models known as reify and reflect, which are defined for the modal fragment as follows:376

reifyA : ∀ Γ. JAKΓ → Γ ⊢nf A

. . .

reify♢A;Γ ((single n : Γ ◁SL Γ, B), x : JAKΓ,B) = letmapSL n (reifyA;(Γ,B) x)
377

reflectA : ∀ Γ. Γ ⊢ne A → JAKΓ
. . .

reflect♢A;Γ n = (single n, reflectA;(Γ,A) var zero)
378

The function reify is a type-indexed natural transformation, which for the case of type ♢A in
some context Γ, is given as argument an element of type J♢AKΓ, which is Σ∆.Γ ◁SL ∆×JAK∆.
The first component gives us a neutral Γ ⊢ne n : B, and recursively reifying the second
component gives us a normal form of Γ, B ⊢nf reifyA;(Γ,B) x : A. We use these to construct the
normal form Γ ⊢nf letmapSL n (reifyA;(Γ,B) x) : ♢A, which is the desired result. The function
reflect, on the other hand, constructs a value pair of type J♢AKΓ = Σ∆.Γ ◁SL ∆ × JAK∆
using the given neutral Γ ⊢ne n : ♢A and picking Γ, A for the witness ∆ to obtain a value
of type JAKΓ,A by reflecting the neutral of Γ, A ⊢var zeroA. These functions are key to
defining quote : (∀∆. JΓK∆ → JAK∆) → Γ ⊢nf A, which in turn gives us the function norm:

norm t = quote JtK

NbE models can be constructed likewise for the calculi λSRL, λSJL and λLL. The normal379

forms of these calculi are defined in Figure 6. To construct the model, we uniformly pick380

contexts for worlds, the ≤ relation for Ri, and the below defined respective modal accessibility381

relation for Rm. As before, we pick neutrals terms for valuation.382

nil : Γ ◁SRL Γ
Γ ⊢ne n : ♢A

single n : Γ ◁SRL Γ, A

Γ ⊢ne n : ♢A

single n : Γ ◁SJL Γ, A

Γ ⊢ne n : ♢A m : Γ, A ◁SJL ∆
cons n m : Γ ◁SJL ∆

nil : Γ ◁LL Γ
Γ ⊢ne n : ♢A m : Γ, A ◁LL ∆

cons n m : Γ ◁LL ∆

Observe that relation ◁LL satisfies the inclusion condition (we can define function incl) and is383

reflexive (we can define reflm) and transitive (we can define transm). On the other hand, the384
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SRL/NF/♢-Return
Γ ⊢nf n : A

Γ ⊢nf returnSRL n : ♢A

SRL/NF/♢-Letmap
Γ ⊢ne n : ♢A Γ, A ⊢nf m : B

Γ ⊢nf letmapSRL n m : ♢B

SJL/NF/♢-Letmap
Γ ⊢ne n : ♢A Γ, A ⊢nf m : B

Γ ⊢nf letmapSJL n m : ♢B

SJL/NF/♢-Let
Γ ⊢ne n : ♢A Γ, A ⊢nf m : ♢B

Γ ⊢nf letSJL n m : ♢B

LL/NF/♢-Return
Γ ⊢nf n : A

Γ ⊢nf returnLL n : ♢A

LL/NF/♢-Let
Γ ⊢ne n : ♢A Γ, A ⊢nf m : ♢B

Γ ⊢nf letLL n m : ♢B

Figure 6 Normal forms for modal fragments of λSRL, λSJL and λLL

relations ◁SRL and ◁SJL both satisfy the inclusion condition and are respectively reflexive385

and transitive, but not the other way round. The main idea behind the definitions of these386

relations is that they imitate the binding structure of the normal forms in Figure 6.387

▶ Theorem 11 (Correctness of normalization). For all terms Γ ⊢ t : A in λSL/λSRL/λSJL/λLL,388

there exists a normal form Γ ⊢nf n : A such that t ∼ n.389

Proof. By virtue of the function norm, we get that every term t has a normal form norm t.390

Using a standard logical relation based argument we can further show that t ∼ norm t. ◀391

▶ Corollary 12 (Completeness of proof-relevant possible-world semantics). For any two392

terms Γ ⊢ t, u : A in λSL/λSRL/λSJL/λLL, if JtK = JuK in all proof-relevant possible-world393

models determined by the respective λSL/λSRL/λSJL/λLL-frames, then Γ ⊢ t ∼ u : A.394

Proof. In the respective NbE model, we know JtK = JuK implies norm t = norm u by definition395

of norm. By Theorem 11, we also know t ∼ norm t and u ∼ norm u, thus t ∼ u. ◀396

▶ Corollary 13 (Inadmissibility of irrelevant modal axioms). The axiom R is not derivable in397

λSL or λSJL, and similarly the axiom J is not derivable in λSL or λSRL.398

Proof. We first observe that for any neutral term Γ ⊢ne n : A, the type A is a subformula of399

some type in context Γ. We then show by case analysis that there cannot exist a derivation400

of the judgement · ⊢nf A ⇒ ♢A in λSL or λSJL, and thus there cannot exist a derivation of401

axiom R in either calculus—because every term must have a normal form, as shown by the402

normalization function. A similar argument can be given for axiom J in λSL and λSRL. ◀403

6 Related and further work404

Simpson [35, Chapter 3] gives a comprehensive summary of several IMLs alongside a detailed405

discussion of their characteristic axioms and possible-world semantics. Notable early work on406

IMLs can be traced back to Fischer-Servi [22, 34], Božić and Došen [12], Sotirov [36], Plotkin407

and Stirling [33], Wijesekera [38], and many others since.408

Global vs local interpretation. Fairtlough and Mendler [20] give a different presentation of409

LL. The truth of their lax modality ⃝ is defined “globally” as follows:410

M, w ⊩ ⃝A iff for all w′ s.t. w Ri w′ there exists v with w′ Rm v and M, v ⊩ A411
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Notably, their semantics does not require the forward confluence condition. In the presence412

of forward confluence, this definition is equivalent to the “local” one we have chosen in413

Section 2 for the ♢ modality [35, 18], which means ⃝A is true if and only if ♢A is true. This414

observation can also be extended to the respectively determined presheaf functors:415

▶ Proposition 14. The presheaf functors ♢ and ⃝ are naturally isomorphic.416

In modal logic, the forward confluence condition forces the axiom ♢(A∨B) =⇒ ♢A∨♢B417

to be true [6], which may not be desirable in some applications. This observation, however,418

presupposes that the satisfaction clause for the disjunction connective is defined as follows:419

M, w ⊩ A ∨ B iff M, w ⊩ A or M, w ⊩ B420

This “Kripke-style” interpretation of disjunction is not suitable for our purposes given that421

our objective is to constructively prove completeness for lambda calculi using possible-world422

semantics. Completeness in the presence of sum types in lambda calculi is a notorious423

matter [4, 21] that requires further investigation in the presence of the lax modality.424

Box modality in lax logic. Fairtlough and Mendler [20] note that “there is no point” in425

defining a □ modality for LL since it “yields nothing new”. With the following standard426

extension of the satisfaction clause for □:427

M, w ⊩ □A iff for all w′ s.t. w Ri w′ and for all v s.t. w′ Rm v implies M, v ⊩ A428

it follows that F |= A if and only if F |= □A for an arbitrary LL-frame F , making □ a429

logically meaningless addition to LL.430

Proof-relevant semantics Alechina at al. [3] study a connection between categorical and431

possible-world models of lax logic. They show that an LL-modal algebra determines a432

possible-world model of LL [3, Theorem 4] via the Stone representation, and observe that a433

modal algebra is a “thin” categorical model, whose morphisms are given by the partial-order434

relation of the algebra. This connection, while illuminating, does not satisfy an important435

requirement motivating Mitchell and Moggi’s [29] work: to construct models of lambda calculi436

by leveraging the possible-world semantics of the corresponding logic. Our proof-relevant437

possible-world semantics satisfies this requirement and is the key to constructing NbE models.438

Kavvos [26, 27] develops proof-relevant possible-world semantics (calling it “Two-di-439

mensional Kripke semantics”) for the modal logic corresponding to the minimal Fitch-style440

calculus, which is namely the logic of Galois connections due to Dzik et al [19]. Kavvos adopts441

a categorical perspective and shows that profunctors determine an adjunction on presheaves,442

which can be used to model ♦ ⊣ □. Kavvos’ profunctor condition is the proof-relevant443

refinement of Sotirov’s [36] bimodule frame condition which states that Ri; Rm; Ri ⊆ Rm444

Proof-relevant possible-world semantics and its connection to NbE for modal lambda445

calculi is a novel consideration in our work. Valliappan et al [37] prove normalization for446

Fitch-style modal lambda calculi [11, 13], consisting of the necessity modality □ and its left447

adjoint ♦ using possible-world semantics with a proof-irrelevant relation Rm.448

Frame correspondence. The study of necessary and sufficient frame conditions for modal449

axioms, known as frame correspondence, appears to be tricky in the proof-relevant setting.450

Plotkin and Stirling [33] prove a remarkably general correspondence theorem (Theorem 2.1)451

that tells us that the reflexivity of Rm; Ri
−1 corresponds to axiom R and Rm

2 ⊆ Rm; Ri
−1

452

corresponds to axiom J. We have not studied frame correspondence in this article, but leave453

it as a matter for future work. The profunctor perspective of Kavvos [26] might help here.454
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A Definitions of strong functors572

A strong functor F : C → C for a cartesian category C is an endofunctor on C with a natural573

transformation θP,Q : P × FQ → F (P × Q) natural in C-objects P and Q such that the574

following diagrams stating coherence conditions commute:575

1 × FP F (1 × P )

FP

π2

θ1,P

F π2576

(P × Q) × FR F ((P × Q) × R)

P × (Q × FR) P × F (Q × R) F (P × (Q × R))

αP,Q,F R

θP ×Q,R

F αP,Q,R

idP ×θQ,R θP,Q×R

577

Observe that the terminal object 1 , the projection morphism π2 : P × Q → Q and the578

associator morphism αP,Q,R : (P × Q) × R → P × (Q × R) (for all C-objects P, Q, R) live in579

the cartesian category C.580

A pointed functor F : C → C on a category C is an endofunctor on C equipped with a581

natural transformation point : Id ·−→ F from the identity functor Id on C.582

A strong and pointed functor F is said to be strong pointed, when it satisfies an additional583

coherence condition that point is a strong natural transformation, meaning that the following584

diagram stating a coherence condition commutes:585

P × Q

P × FQ F (P × Q)

idP ×pointQ pointP ×Q

θP,Q

586

A semimonad F : C → C, or joinable functor, on a category C is an endofunctor on587

C that forms a semigroup in the sense that it is equipped with a “multiplication” natural588

transformation µ : F 2 ·−→ F that is “associative” as µP ◦ µF P = µP ◦ F (µP ) : F 3P → FP .589
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A strong functor F that is also a semimonad is a strong semimonad when µ is a strong590

natural transformation, meaning that the following coherence condition diagram commutes:591

P × FFQ F (P × FQ) FF (P × Q)

P × FQ F (P × Q)

idP ×µQ

θP,F Q F θP,Q

µP ×Q

θP,Q

592

A strong functor F that is also a semimonad is a strong semimonad when µ is a strong593

natural transformation, meaning that the following coherence condition diagram commutes:594

P × FFQ F (P × FQ) FF (P × Q)

P × FQ F (P × Q)

idP ×µQ

θP,F Q F θP,Q

µP ×Q

θP,Q

595

A monad F : C → C on a category C is a semimonad that is pointed, such that the natural596

transformation point : Id ·−→ F is the left and right unit of multiplication µ : F 2 ·−→ F in the597

sense that µP ◦ FpointP = idF P and µP ◦ pointF P = idF P for some C-object P .598

A strong functor F that is also a monad is a strong monad when the natural transforma-599

tions point and µ of the monad are both strong natural transformations, making F both a600

strong pointed functor and a strong semimonad.601
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