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Abstract

Type systems with modalities have found a wide range of ap-

plications in programming languages to capture and specify

properties of a program in its type. Since different applica-

tions may demand different modal operations, we desire a

uniform approach to designing and studying modal lambda

calculi. Fitch-style modal calculi simplify formulating calculi

that incorporate different modal operations using the charac-

teristic µ operator on contexts. The presence of µ, however,
complicates reasoning with the syntax of the calculus, and

demands tedious and seemingly ad hoc treatment to prove

meta-theoretic properties such as normalization.

It has been shown that normalization can be achieved for

some Fitch-style calculi by constructing Normalization by

Evaluation (NbE) models as instances of their possible-world

semantics, thus bypassing reasoning about the intricate syn-

tax of Fitch-style calculi. In this article, we pursue the ex-

tension of this result to a Fitch-style calculus for applicative

functors. We also discuss the applicability of this calculus

with some concrete applicative functors.

1 Introduction

Type systems with modalities enable us to capture and spec-

ify properties of a program explicitly in its type. A modal-

ity can be understood as a unary type former with some

operations. The necessity modality, which originates from

modal logic, is a type former ◻ accompanied by the ne-

cessitation rule (if · ⊢ 𝐴 then Γ ⊢ ◻𝐴) and the K axiom

(◻(𝐴⇒𝐵)⇒◻𝐴⇒◻𝐵). Type systems with necessity modal-

ities have found several applications in programming lan-

guages including modelling purity in an impure functional

language (◻𝐴 as a pure value of type 𝐴) [4], confidentiality

in information-flow control (◻𝐴 as a secret of type 𝐴) [15],

and binding-time separation in partial evaluation and staged

computation (◻𝐴 as code of type 𝐴) [6, 7].

Different applications may demand the addition of differ-

ent modal operations, and the inclusion of each operation

results in a different type system. From the perspective of

modal logic, these operations correspond to modal axioms,

and the inclusion of each axiom results in a different modal

logic. For example, by adding the modal axioms T (◻𝐴⇒𝐴)

and 4 (◻𝐴⇒◻◻𝐴) to the basic modal logic IK with the ne-

cessitation rule and axiom K, we obtain the richer logics IT

(adding axiom T), IK4 (adding axiom 4), and IS4 (adding

both T and 4). Formulating type systems that correspond to

different modal logics with well-behaved semantic and com-

putational properties is an active area of study, and the topic

of this article is a type system which includes the following

axiom:

R : 𝐴⇒◻𝐴

Fitch-style modal lambda calculi [3, 5, 13] feature neces-

sity modalities in a typed lambda calculus by extending the

typing context with a delimiting “lock” operator (denoted

by µ). The characteristic µ operator simplifies formulating

calculi that incorporate different modal axioms and these

calculi have elegant semantic and computational properties.

In this article, we study the Fitch-style calculus λIR presented

by Clouston [5], which corresponds to the logic IR obtained

by adding axiom R to IK.

The rules of λIR are summarized in Figure 1, where the

omitted rules for 𝜆-abstraction and function application are

formulated in the usual way. This calculus exhibits the in-

Ty 𝐴 F . . . | ◻𝐴 Ctx Γ F · | Γ, 𝑥 : 𝐴 | Γ,µ

Var

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

◻-Intro

Γ,µ ⊢ 𝑡 : 𝐴
Γ ⊢ box 𝑡 : ◻𝐴

◻-Elim

Γ ⊢ 𝑡 : ◻𝐴
Γ,µ, Γ′ ⊢ unboxλIR 𝑡 : 𝐴

Figure 1. Typing rules for λIR (omitting 𝜆-abstraction and

application)

terface of applicative functors [14] in functional program-

ming for the type former ◻, where the derivation of ax-

iom R gives us pure : 𝐴⇒◻𝐴 and that of axiom K gives us

(⊛) : ◻(𝐴⇒ 𝐵) ⇒◻𝐴⇒◻𝐵.

The presence of µ, however, complicates reasoning with

the syntax of the calculus, and demands tedious and seem-

ingly ad hoc treatment to prove meta-theoretic properties

such as normalization. It has been shown that normalization

can be achieved for some Fitch-style calculi by constructing

Normalization by Evaluation (NbE) [2] models as instances

of their possible-world semantics [18], thus bypassing rea-

soning about the intricate syntax of Fitch-style calculi. In

this article, we pursue the extension of this result to the

Fitch-style calculus λIR. In particular, we identify the frame

condition (defined in Section 2) that defines the possible-

world models of λIR and suggest a normalization algorithm

for it by constructing an NbE model instance.
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The main challenge encountered in giving possible-world

semantics for λIR is that it varies from other Fitch-style cal-

culi in both the Var and the ◻-Elim rules. This is unlike the

Fitch-style calculi considered in previous work by Valliap-

pan, Ruch, and Tomé Cortiñas [18] which only vary in the

◻-elimination rule. Moreover, their work leverages the well-

understood frame conditions of axioms T and 4 in classical

modal logic. Axiom R does not, however, have any interest-

ing possible-world semantics in classical modal logic, since

the models that satisfy the corresponding frame condition

are degenerate. We elaborate further on this gap in Section 5.

In the next section, we provide an overview of possible-

world semantics of Fitch-style calculi, present the frame

condition that enables the interpretation of axiom R, and

illustrate the construction of an NbE model instance for λIR.

In Section 3, we define the calculus λIR in further detail and

discuss its interpretation in a possible-world model. We elab-

orate on the applicative functors that can be represented

using λIR and give examples of three such applicative func-

tors in Section 4.

2 Possible-World Semantics and NbE

The possible-world semantics enable a uniform treatment of

various Fitch-style calculi by isolating their differences to the

specific model parameter known as a frame. The types and

contexts of all Fitch-style calculi are interpreted alike in a pos-

sible-world model, and the interpretation of a specific calcu-

lus and the construction of an NbE model instance is enabled

by imposing further conditions on frames. In this section, we

first discuss the common interpretation of types and contexts

of Fitch-style calculi, and then present the frame condition

for interpreting λIR and constructing its NbE model.

Possible-World Models. A possible-world model is given

by a frame 𝐹 and a valuation 𝑉𝜄 . A frame 𝐹 is a triple that

consists of a type𝑊 of worlds and two binary accessibil-

ity relations 𝑅𝑖 (for “intuitionistic”) and 𝑅𝑚 (for “modal”)

on worlds that are required to satisfy the following frame

conditions (subject to certain coherence conditions [18]):

• 𝑅𝑖 is reflexive and transitive

• 𝑅𝑚 ; 𝑅𝑖 ⊆ 𝑅𝑖 ; 𝑅𝑚 .

For worlds 𝑤,𝑤 ′, 𝑣 : 𝑊 , we may think of 𝑤 𝑅𝑖 𝑤 ′
as an

increase in knowledge from𝑤 to𝑤 ′
and𝑤 𝑅𝑚 𝑣 as a possible

passage of time from𝑤 to 𝑣 . The latter condition states that

if𝑤 𝑅𝑚 𝑣 and 𝑣 𝑅𝑖 𝑣
′
then there exists some world𝑤 ′

such

that 𝑤 𝑅𝑖 𝑤 ′
and 𝑤 ′ 𝑅𝑚 𝑣 ′. A valuation 𝑉𝜄 is a family of

types 𝑉𝜄,𝑤 indexed by a world𝑤 , along with functions wk𝐴 :

𝑉𝜄,𝑤 → 𝑉𝜄,𝑤′ whenever𝑤 𝑅𝑖 𝑤
′
.

Interpreting Fitch-Style Calculi. Given a possible-world
model, we interpret (object) types 𝐴 in a Fitch-style calculus

as families of (meta) types ⟦𝐴⟧𝑤 indexed by worlds𝑤 :𝑊

as below:

⟦𝜄 ⟧𝑤 = 𝑉𝜄,𝑤
⟦𝐴⇒ 𝐵⟧𝑤 = ∀𝑤 ′.𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′

⟦◻𝐴 ⟧𝑤 = ∀𝑤 ′.𝑤 𝑅𝑖 𝑤
′ → ∀𝑣 .𝑤 ′ 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣

The base type 𝜄 is interpreted using the valuation 𝑉𝜄 , and

function types 𝐴⇒ 𝐵 at world𝑤 are interpreted as families

of functions ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′ for𝑤 𝑅𝑖 𝑤
′
. The interpretation

of types ◻𝐴 can be understood as a statement about the

future: ◻𝐴 is true at a world𝑤 if 𝐴 is necessarily true in any

possible future world 𝑣 of world𝑤 ′
for𝑤 𝑅𝑖 𝑤

′
.

We interpret contexts Γ in a Fitch-style calculus also as

families of types ⟦𝐴⟧𝑤 indexed by worlds𝑤 :𝑊 as below:

⟦· ⟧𝑤 = ⊤
⟦Γ, 𝐴⟧𝑤 = ⟦Γ⟧𝑤 × ⟦𝐴⟧𝑤
⟦Γ,µ⟧𝑤 =

∑
𝑢 𝑢 𝑅𝑚 𝑤 × ⟦Γ⟧𝑢

The empty context and the context extension are interpreted

as usual by the Cartesian product of families. Dual to the

interpretation of types◻𝐴, the interpretation of contexts Γ,µ
can be understood as a statement about the past: Γ,µ is true

at a world𝑤 if Γ is true at some past world 𝑢 for which𝑤 is

a possibility.

The frame conditions imposed on a possible-world model

enable the interpretation of terms in a Fitch-calculus, de-

fined by a function ⟦−⟧ : Γ ⊢ 𝐴 → (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤). In
particular, these conditions are required to prove the mono-

tonicity lemma which is necessary for the interpretation

to be sound. For types 𝐴, this lemma states that we have

wk𝐴 : ⟦𝐴⟧𝑤 → ⟦𝐴⟧𝑤′ whenever𝑤 𝑅𝑖 𝑤
′
—and similarly for

contexts Γ.
The Fitch-style calculus λIK, corresponding to the basic

modal logic IK, can be interpreted in an arbitrary possible-

world model and an NbE model can also be constructed as

an instance. To achieve the same for Fitch-style calculi cor-

responding to richer logics, we must impose further frame

conditions on the definition of a possible-world model. For

example, to interpret λIT, corresponding to the logic IT fea-

turing axiom T : ◻𝐴 ⇒ 𝐴, in a possible-world model, we

further require 𝑅𝑚 to be a reflexive relation. With this re-

quirement, we have that ⟦◻𝐴⟧𝑤 implies ⟦𝐴⟧𝑤 for an arbi-

trary world𝑤 , since both 𝑅𝑖 and 𝑅𝑚 are reflexive now, thus

validating axiom T in the model.

Frame Condition for λIR. It is also possible to validate
axiom R by requiring a frame condition on 𝑅𝑚 , which states

that worlds be isolated with respect to the 𝑅𝑚 relation, i.e.

𝑤 𝑅𝑚 𝑣 implies𝑤 = 𝑣 for all𝑤, 𝑣 :𝑊 . This condition, how-

ever, severely restricts the models which can be constructed

as instances, and, in particular, exempts the construction

of an NbE model for λIR. In Section 5, we discuss why an

attempt to impose a condition on 𝑅𝑚 alone is likely to be a

futile one. But do not despair! Fortunately, we can instead val-

idate the axiom with the following frame condition (subject
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to a coherence condition):

𝑅𝑚 ⊆ 𝑅𝑖

With this condition, we now have that ⟦𝐴⟧𝑤 implies ⟦◻𝐴⟧𝑤
for an arbitrary world𝑤 . This is because, given ⟦𝐴⟧𝑤 ,𝑤 𝑅𝑖
𝑤 ′

and 𝑤 ′ 𝑅𝑚 𝑣 , we have 𝑤 𝑅𝑖 𝑣 using the frame condi-

tion 𝑅𝑚 ⊆ 𝑅𝑖 and transitivity of 𝑅𝑖 , from which we obtain

the desired ⟦𝐴⟧𝑣 by applying the monotonicity lemma.

NbE Model for λIR. The construction of an NbE model is

performed alike for all Fitch-style calculi, including λIR. A

possible-world model is an NbE model for a Fitch-style calcu-

luswhen it is equippedwith a function quote : (∀𝑤. ⟦Γ⟧𝑤 →
⟦𝐴⟧𝑤) → Γ ⊢nf 𝐴 that inverts the denotation (∀𝑤. ⟦Γ⟧𝑤 →
⟦𝐴⟧𝑤) of a term to a derivation Γ ⊢nf 𝐴 in normal form.

The normal forms of λIR are defined below by extending the

usual normal forms in the non-modal fragment.

Nf/◻-Intro

Γ,µ ⊢nf 𝑡 : 𝐴
Γ ⊢nf box 𝑡 : ◻𝐴

Ne/◻-Elim

Γ ⊢ne 𝑡 : ◻𝐴
Γ,µ, Γ′ ⊢ne unboxλIK 𝑡 : 𝐴

The judgement Γ ⊢ne 𝐴 denotes a special case of normal

forms known as neutral elements and is defined mutually

with normal forms as usual.

To construct an NbE model, we instantiate the parameters

that define possible-world models as follows: we pick con-

texts for𝑊 , renamings Γ′ ⊢r Γ (defined in the next section)

for Γ 𝑅𝑖 Γ′, and neutral derivations Γ ⊢ne 𝜄 as the valua-

tion 𝑉𝜄,Γ . We pick the modal accessibility relation Δ 𝑅𝑚 Γ
by observing the relationship between the contexts in the

premise and conclusion of the ◻-Elim rule, pictured as:

◻-Elim

Γ ⊢ 𝑡 : ◻𝐴
Δ ⊢ unbox 𝑡 : 𝐴

(Γ ◁ Δ)

The relation Γ ◁ Δ for λIR is defined as ∃Γ′. Δ = Γ,µ, Γ′.
The function quote is implemented as for other Fitch-

style calculi using reification, which is defined as a family of

functions reify𝐴 : ∀Γ. ⟦𝐴⟧Γ → Γ ⊢nf 𝐴 indexed by a type 𝐴.

To reify a value of ⟦◻𝐴⟧Γ , we crucially leverage the fact that
Γ ◁ Γ,µ. Observe that ⟦◻𝐴⟧Γ = ∀Γ′. Γ′ ⊢r Γ → ∀Δ. Γ′ ◁
Δ → ⟦𝐴⟧Δ by definition of ⟦−⟧ and the above instantiations.

By picking Γ for Γ′ and Γ,µ for Δ, we get ⟦𝐴⟧Γ,µ since ⊢r
is reflexive and we know Γ ◁ Γ,µ. By recursively reifying

⟦𝐴⟧Γ,µ, we get a normal form Γ,µ ⊢nf 𝑛 : 𝐴, which can be

used to construct the desired normal form Γ ⊢nf box𝑛 : ◻𝐴

using the rule Nf/◻-Intro.

3 The Calculus λIR

Syntax, Substitutions and Equational Theory. The
syntax of λIR is given as in Figure 1, where we may choose

to replace Rule Var with an equivalent rule that is defined

inductively. To capture the role of the modal accessibility

relation explicitly in the syntax of λIR, we may also replace

the elimination rule ◻-Elim with the following rule and the

relation ◁λIR defined inductively in Figure 2.

◻-Elim

Δ ⊢ 𝑡 : ◻𝐴 𝑒 : Δ ◁λIR Γ

Γ ⊢ unboxλIR 𝑡 𝑒 : 𝐴

nil : Γ ◁λIR Γ,µ

𝑒 : Δ ◁λIR Γ

var 𝑒 : Δ ◁λIR Γ, 𝐴

𝑒 : Δ ◁λIR Γ

lock 𝑒 : Δ ◁λIR Γ,µ

Figure 2. Modal accessibility relation on contexts (λIR)

We define substitutions inductively in Figure 3, and their

admissibility with terms of λIR can be shown with a func-

tion Γ ⊢ 𝐴 → Δ ⊢s Γ → Δ ⊢ 𝐴. A renaming Γ ⊢r Δ is a

substitution Γ ⊢s Δ that consists of only variables, and can

also be defined explicitly in an inductive manner.

The equational theory of λIR extends that of the simply-

typed lambda calculus with Rule ◻-𝛽 and Rule ◻-𝜂, and is

given in Figure 4 by omitting the standard rules. The renam-

ing function ren used in Rule ◻-𝛽 renames a term using a

function factor : Δ ◁λIR Γ → Γ ⊢r Δ,µ that constructs a

renaming from a value of the modal accessibility relation.

Γ ⊢s empty : ·
Γ ⊢s 𝑠 : Δ Γ ⊢ 𝑡 : 𝐴

Γ ⊢s ext 𝑠 𝑡 : Δ, 𝐴

Θ ⊢s 𝑠 : Δ 𝑒 : Θ ◁λIR Γ

Γ ⊢s extµ 𝑠 𝑒 : Δ,µ

Figure 3. Substitutions for λIR

◻-𝛽

Δ,µ ⊢ 𝑡 : 𝐴 𝑒 : Δ ◁λIR Γ

Γ ⊢ unboxλIR (box 𝑡) 𝑒 ∼ ren (factor 𝑒) 𝑡

◻-𝜂

Γ ⊢ 𝑡 : ◻𝐴
Γ ⊢ 𝑡 ∼ box (unboxλIR 𝑡 nil)

Figure 4. Equational theory for λIR (omitting 𝛽- and 𝜂-equa-

tions for function types)
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Evaluation in a Possible-World Model. We define the

evaluation function for the modal fragment of λIR by in-

duction on terms as follows. We omit the evaluation of the

simply-typed fragment which is defined in the usual way.

⟦−⟧ : Γ ⊢ 𝐴 → (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤)
⟦. . . ⟧𝛾 = . . .

⟦box 𝑡 ⟧𝛾 = 𝜆𝑖. 𝜆𝑚. ⟦𝑡⟧ (𝑚,wk 𝑖 𝛾)
⟦unboxλIR 𝑡 𝑒⟧𝛾 = ⟦𝑡⟧𝛿 idr𝑚

where (𝑚,𝛿) = trimλIR
𝛾 𝑒

To evaluate the term Γ ⊢ box 𝑡 : ◻𝐴 with 𝛾 : ⟦Γ⟧𝑤 , we
construct a function of the expected type ∀𝑤 ′.𝑤 𝑅𝑖 𝑤

′ →
∀𝑣 .𝑤 ′ 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣 . Using the arguments 𝑖 : 𝑤 𝑅𝑖 𝑤 ′

and𝑚 : 𝑤 ′ 𝑅𝑚 𝑣 , we recursively evaluate the term Γ,µ ⊢
𝑡 : 𝐴 in the extended environment (𝑚,wk 𝑖 𝛾) : ⟦Γ,µ⟧𝑣 . To
evaluate the term Γ ⊢ unboxλIR 𝑡 𝑒 : 𝐴, where 𝑒 : Δ ◁λIR Γ
for some Δ, we recursively evaluate Δ ⊢ 𝑡 : ◻𝐴 with a

new environment 𝛿 that discards the part of 𝛾 that is not

needed for 𝑡 . The function trimλIR
: ⟦Γ⟧𝑤 → Δ ◁λIR Γ →

⟦Δ,µ⟧𝑤 projects𝛾 to produce𝑚 : 𝑣 ′ 𝑅𝑚 𝑤 and 𝛿 : ⟦Δ⟧𝑣′ . We

then apply the result of recursive evaluation to the identity

renaming idr and the value𝑚 to return the desired result.

4 Applicative Functors of λIR

Clouston’s categorical semantics of the type former ◻ in λIR

identifies the class of applicative functors that have a left

adjoint.

Let (C, Box, Lock, 𝜌) be a model in the categorical seman-

tics of λIR, i.e. a Cartesian-closed category C with an adjunc-

tion Lock ⊣ Box and a natural transformation 𝜌 : Id
·−→ Box.

The context operator µ and the type former ◻ are inter-

preted by the adjoint functors Lock and Box, respectively,

and the invertible rule ◻-Intro is interpreted by the (natural)

bijection that sends a morphism 𝑡 : C(Lock ⟦Γ⟧, ⟦𝐴⟧) to
its adjunct box 𝑡 : C(⟦Γ⟧, Box ⟦𝐴⟧), which can be pictured

similar to the rule like this:

C(Lock ⟦Γ⟧, ⟦𝐴⟧)

C(⟦Γ⟧, Box ⟦𝐴⟧)
============================

This bijection implies additional properties for the applica-

tive functors that are identified by the categorical semantics

of λIR. Since the applicative functor Box has a left adjoint,

it necessarily preserves binary products for instance, which

not all applicative functors do. In fact, if we were to extend

λIR with product types𝐴×𝐵 in the usual way then we could

define an inverse to the function ◻(𝐴 × 𝐵) → ◻𝐴 ×◻𝐵.
In this section, we give three examples of applicative func-

tors which do have a left adjoint, and can thus be used to

interpret λIR.

ReaderMonad. Let C be any Cartesian-closed category C
and 𝐸 : C be any object. The exponentiation functor 𝑋 ↦→
𝐸 ⇒𝑋 has the product functor 𝑋 ↦→ 𝑋 × 𝐸 as its left adjoint

and the constant morphisms𝑋 → 𝐸⇒𝑋 constitute a natural

transformation Id
·−→ 𝐸 ⇒−.

C(𝑋 × 𝐸,𝑌 )

C(𝑋, 𝐸 ⇒ 𝑌 )
===================

Redaction Monad. Let CSet be the category of clas-

sified sets [1, 12] over a given set L of “security levels”. A

classified setX is given by an underlying set𝑋 equippedwith

a family of reflexive binary relations 𝑅ℓ on 𝑋 indexed by “se-

curity levels” ℓ ∈ L. A function 𝑓 : 𝑋 → 𝑌 between the un-

derlying sets of two classified setsX andY is a mapX → Y
if and only if it is relation-preserving, i.e. if 𝑓 𝑥 𝑅ℓ 𝑓 𝑥

′
when-

ever 𝑥 𝑅ℓ 𝑥
′
for 𝑥 , 𝑥 ′ ∈ 𝑋 and ℓ ∈ L. Fix a subset 𝜋 ⊆ L of

“secret” security levels. The functor X ↦→ TX that replaces

the relations 𝑅ℓ at secret security levels ℓ ∈ 𝜋 with the total

relation on𝑋 has as its left adjoint the functorX ↦→ DX that

replaces the relations 𝑅ℓ for ℓ ∈ 𝜋 instead with the identity

relation. The identity functions 𝑋 → 𝑋 are maps between

the classified setsX and T(X) and hence constitute a natural
transformation Id

·−→ T.

CSet(DX,Y)

CSet(X,TY)
====================

Later Modality. Let PSh(𝜔) be the category of con-

travariant set-valued functors 𝑃 , 𝑄 from the preorder

𝜔 : 0 → 1 → 2 → · · ·

of natural numbers 𝑛 ∈ N and natural transformations 𝛼 :

𝑃
·−→ 𝑄 between them. The functor 𝑃 ↦→ ▶𝑃 that replaces

the set 𝑃 (0) by a singleton set {∗} and the sets 𝑃 (𝑛 + 1) by
the sets 𝑃 (𝑛) has as its left adjoint the functor 𝑃 ↦→ 𝑃◁ that

replaces the sets 𝑃 (𝑛) by the sets 𝑃 (𝑛 + 1). The restriction
maps

𝑃
·−→ ▶𝑃, 𝑝 ∈ 𝑃 (𝑛) ↦→

{
∗ 𝑛 = 0

𝑝 |𝑚 𝑛 =𝑚 + 1

constitute a natural transformation Id
·−→ ▶−.

PSh(𝜔) (𝑃◁, 𝑄)

PSh(𝜔) (𝑃, ▶𝑄))
========================

When we see the (reverse) preorder 𝜔op
as the type of

worlds 𝑛, 𝑚 ∈ N with the intuitionistic accessibility rela-

tion 𝑛 𝑅𝑖 𝑚 ⇔ 𝑛 ≥ 𝑚 and equip it with the modal acces-

sibility relation 𝑛 𝑅𝑚 𝑚 :⇔ 𝑛 isSucc 𝑚 ⇔ 𝑛 = 𝑚 + 1 then

we recover the later modality ▶ and its left adjoint ◁ as

the necessity modality Box and its left adjoint Lock for the

frame (N, ≥, isSucc), and the natural transformation Id
·−→

▶− as the implication Id
·−→ Box. Note that we indeed have

𝑅𝑚 ; 𝑅𝑖 ⊆ 𝑅𝑖 ; 𝑅𝑚 and 𝑅𝑚 ⊆ 𝑅𝑖 for these definitions.
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5 Axiom R in Modal Logic

Unlike the intuitionistic modal logic IR, the axiomatization

of a classical modal logic CR as an extension of the basic

classical modal logic CK with axiom R exhibits the validity

of several unexpected formulae. For example, contrary to

what the axiomatization of CR might suggest, we can also

show that ◻◻𝐴⇒◻𝐴 for an arbitrary formula 𝐴.

In this section, we analyze the interpretation of axiom R in

possible-world models of classical modal logic. We observe

that the frame condition on 𝑅𝑚 required for validating ax-

iom R in classical logic is too restrictive since the models

that satisfy this condition are degenerate. This is unlike the

case of axioms T and 4, whose classical and intuitionistic

frame conditions on 𝑅𝑚 coincide. We discuss this seeming

disruption in harmony for axiom R and show that the clas-

sical frame condition—although not identical—is in fact a

special case of the intuitionistic one.

We work in a classical metatheory in this section. More-

over, as is usual in classical modal logic, we work with proof-

irrelevant propositions and relations, and hence we drop all

the coherence conditions mentioned previously.

Classical Possible-World Semantics. A possible-world

model in classical modal logic is defined as before by omitting

the 𝑅𝑖 relation and the frame conditions that mention it. It

is thus given by a frame 𝐹 defined as a tuple (𝑊,𝑅𝑚) and a

valuation𝑉𝜄 for the atomic formula 𝜄. The interpretation of a

formula ◻𝐴 at a world𝑤 is given as:

⟦◻𝐴⟧𝑤 = ∀𝑣 .𝑤 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣
The basic classical modal logic CK, the classical variant of IK,

is both sound and complete with respect to possible-world

models under this interpretation. That is, for a sequent Γ ⊢ 𝐴
provable in CK, we have that Γ ⊨ 𝐴, i.e. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤 for

every world𝑤 in all classical possible-world models (sound-

ness), and vice versa (completeness).

Frame Correspondence. A modal axiom is said to corre-

spond to a frame condition (on 𝑅𝑚) if the condition is both

necessary and sufficient for the validation of the axiom in the

possible-world semantics. The modal axiom T corresponds

to reflexivity of 𝑅𝑚 , while 4 corresponds to transitivity. The

respective modal logics CT and CK4 are also complete with

respect to the models that satisfy the frame conditions that

the axioms correspond to.

While axiom R has a corresponding frame condition that

identifies models where worlds are isolated with respect to

𝑅𝑚 (𝑤 𝑅𝑚 𝑣 implies𝑤 = 𝑣 for all𝑤, 𝑣 :𝑊 ), this condition is

too restrictive. Models that satisfy this condition also validate

the formulas◻◻𝐴⇒◻𝐴 for instance. This is because, given

⟦◻◻𝐴⟧𝑤 at some world 𝑤 , any neighbouring world of 𝑤

must be𝑤 itself, and thus ⟦◻𝐴⟧𝑤 also holds.

Classical vs. Intuitionistic Modal Logic. The possible-
world models for a classical modal logic can be recovered

from the intuitionistic definition given earlier in Section 2

by fixing 𝑅𝑖 to be the identity relation (𝑤 𝑅𝑖 𝑣 if and only if

𝑤 = 𝑣). This means that the classical possible-world models

are a subclass of intuitionistic possible-world models, and

that the classical models must at least satisfy the conditions

satisfied by the intuitionistic models. In particular, this means

that a corresponding frame condition on 𝑅𝑚 used to interpret

a classical modal logic must at least be the one used for its

intuitionistic counterpart.

For the logics IT, IK4 and IS4, the corresponding frame

conditions on 𝑅𝑚 are in fact identical to their classical coun-

terparts. For the logic IR, on the other hand, observe that

the corresponding frame condition 𝑅𝑚 ⊆ 𝑅𝑖 , in combination

with defining 𝑅𝑖 as the identity relation, does in fact yield

the condition that𝑤 𝑅𝑚 𝑣 implies𝑤 = 𝑣 .

6 Further and Related Work

Fitch-Style Calculi. The basic Fitch-style calculus λIK

was originally presented by Borghuis [3] and Martini and

Masini [13], and its categorical semantics were later identi-

fied by Clouston [5]. The calculus λIS4, on the other hand, has

several different formulations [6, 7, 5, 9], where the primary

difference lies in whether the logical equivalence ◻𝐴 ⇔
◻◻𝐴 can also be shown to be an isomorphism, i.e. whether

in the semantics the comonad ◻ is also idempotent. The cal-

culi λIT and λIK4 were presented explicitly by Valliappan,

Ruch, and Tomé Cortiñas [18], but have also been alluded

to in previous work [6, 7, 5]. Clouston presented the calcu-

lus λIR and its categorical semantics, albeit with a stronger

variant of Rule ◻-𝛽: unbox (box 𝑡) ∼ 𝑡 .

Valliappan, Ruch, and Tomé Cortiñas presented the possi-

ble-world semantics for the calculi λIK, λIK4, λIT and λIS4, and

also proved normalization for these calculi by constructing

NbE models as instances. In contrast to earlier work, this

approach bypasses syntactic considerations in the imple-

mentation of the normalization algorithm. In this article, we

investigate the possible-world semantics of λIR and suggest

the construction of an NbE model for it. Normalization for

λIR was also considered by Clouston, but without Rule ◻-𝜂.

Towards a Fitch-Style Calculus for Monads. Two of

the three examples in Section 4 are in fact monads, which sug-

gests that it might be worthwhile formulating a Fitch-style

monad calculus which incorporates the following axiom:

J : ◻◻𝐴⇒◻𝐴

Such a calculus would allow us to understand the possible-

world interpretation of a monad as a necessity modality.

We define a Fitch-style calculus λPLLBox (for “Propositional

Lax Logic” [8] formulated using a necessity modality “Box”)

similar to λIR in Section 3 by replacing the modal accessi-

bility relation ◁λIR in the ◻-elimination rule with the rela-

tion ◁λPLLBox defined in Figure 5.
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base-var : Γ, 𝐴 ◁λPLLBox Γ, 𝐴,µ

base-lock : Γ,µ ◁λPLLBox Γ,µ

𝑒 : Δ ◁λPLLBox Γ

var 𝑒 : Δ ◁λPLLBox Γ, 𝐴

𝑒 : Δ ◁λPLLBox Γ

lock 𝑒 : Δ ◁λPLLBox Γ,µ

Figure 5. Modal accessibility relation on contexts (λPLLBox)

In classical modal logic, the axiom J corresponds to the

following frame condition:

𝑅𝑚 ⊆ 𝑅𝑚 ; 𝑅𝑚

The relation ◁λPLLBox satisfies this condition, indicating that it
is likely the right choice for λPLLBox. The equational theory of

λPLLBox and its categorical semantics requires further study.

This calculus is expected to inevitably exhibit strength (a

natural transformation 𝐴 × ◻𝐵
·−→ ◻(𝐴 × 𝐵)) similar to

the case for λIR. The possible-world interpretation and NbE

model construction is also likely to resemble the process for

λIR, but we have not yet investigated this.

Beyond Fitch-Style Calculi. Several examples of applica-

tive functors that are also monads do not possess a left ad-

joint, thus indicating the limited applicability of the Fitch-

style calculus for modelling monads. To study the possi-

ble-world semantics of the applicative functors and monads

exempted by the Fitch-style calculi, it might be better to

use other formulations, such as Moggi’s monadic metalan-

guage [16] for monads, or the more general dual context-cal-

culi [17, 11] and multi-modal type theory [10]. The possible-

world interpretation of many of these calculi remain an open

problem, thus leaving much in the avenue of future work.
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