{-# OPTIONS --safe --without-K #-}
module IS4.Norm.Properties.Soundness where
open import Data.Unit using (⊤ ; tt)
open import Data.Product using (Σ ; _×_ ; _,_ ; -,_)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; trans ; subst ; subst₂ ; cong ; cong₂ ; module ≡-Reasoning)
open import PEUtil
open import IS4.Norm.Base
open import IS4.Norm.NbE.Model hiding (factorWk)
open import IS4.Norm.NbE.Reification
open import IS4.Term
quotTm : Tm' Γ a → Tm Γ a
quotTm x = embNf (reify _ x)
-----------------------
-- Logical Relations --
-----------------------
L : (a : Ty) → (t : Tm Γ a) → (x : Tm' Γ a) → Set
L ι t n =
t ≈ quotTm n
L {Γ} (a ⇒ b) t f =
∀ {Γ' : Ctx} {u : Tm Γ' a} {x : Tm' Γ' a}
→ (w : Γ ⊆ Γ') → (uLx : L a u x) → L b (app (wkTm w t) u) (f .apply w x)
L {Γ} (□ a) t b =
∀ {Γ' Δ ΓR' : Ctx}
→ (w : Γ ⊆ Γ') → (e : CExt Δ Γ' ΓR') → L a (unbox (wkTm w t) e) (b .apply w (-, e))
data Lₛ {Γ : Ctx} : (Δ : Ctx) → Sub Γ Δ → Sub' Γ Δ → Set where
[] : Lₛ [] [] tt
_`,_ : {s : Sub Γ Δ} {δ : Sub' Γ Δ} {t : Tm Γ a} {x : Tm' Γ a}
→ (sLδ : Lₛ Δ s δ) → (tLx : L a t x) → Lₛ (Δ `, a) (s `, t) (elem (δ , x))
lock : {s : Sub Γ' Δ} {δ : Sub' Γ' Δ}
→ (sLδ : Lₛ Δ s δ) → (e : CExt Γ Γ' ΓR') → Lₛ (Δ #) (lock s e) (elem (Γ' , (ΓR' , e) , δ))
----------------------------
-- Standard LR properties --
----------------------------
-- prepend a reduction trace to the "trace builder" L
L-prepend : {t u : Tm Γ a} {x : Tm' Γ a}
→ (t≈u : t ≈ u)
→ (uLx : L a u x)
→ L a t x
L-prepend {a = ι} t≈u uLn
= ≈-trans t≈u uLn
L-prepend {a = a ⇒ b} t≈u uLf
= λ w uRy → L-prepend (cong-app≈ (wkTmPres≈ w t≈u) ≈-refl) (uLf w uRy)
L-prepend {a = □ a} t≈u uLb
= λ w e → L-prepend (cong-unbox≈ (wkTmPres≈ w t≈u)) (uLb w e)
-- reduction-free version of L-prepend
L-cast : {t u : Tm Γ a} {x y : Tm' Γ a}
→ (t≡u : t ≡ u)
→ (x≡y : x ≡ y)
→ (uLy : L a u y)
→ L a t x
L-cast refl refl uLy = uLy
-- extract reduction trace from L
L-build : {t : Tm Γ a} {x : Tm' Γ a}
→ (tLx : L a t x) → t ≈ quotTm x
-- a neutral element is related to its reflection
L-reflect : (n : Ne Γ a)
→ L a (embNe n) (reflect a n)
L-build {a = ι} tLn
= tLn
L-build {a = a ⇒ b} tLf
= ≈-trans
(⟶-to-≈ (exp-fun _))
(cong-lam≈ (L-build (tLf fresh[ a ] (L-reflect var0))))
L-build {a = □ a} {t} tLb
= ≈-trans
(⟶-to-≈ (exp-box _))
(cong-box≈ (L-build (L-cast (cong1 unbox (sym (wkTmPresId t))) refl (tLb idWk new))))
L-reflect {a = ι} n
= ≈-refl
L-reflect {a = a ⇒ b} n {_Γ'} {_t} {x}
= λ w tLx → L-prepend
(cong-app≈ (≈-reflexive (nat-embNe w n)) (L-build tLx))
(L-reflect (app (wkNe w n) (reify a x)))
L-reflect {a = □ a} n
= λ w e → L-prepend
(cong-unbox≈ (≈-reflexive (nat-embNe w n)))
(L-reflect (unbox (wkNe w n) e))
-- L is invariant under weakening
wkTmPresL : {t : Tm Γ a} {x : Tm' Γ a}
→ (w : Γ ⊆ Γ')
→ (tLx : L a t x)
→ L a (wkTm w t) (wkTm' a w x)
wkTmPresL {a = ι} {x = x} w tLn
= ≈-trans (wkTmPres≈ w tLn) (≈-reflexive (nat-embNf w (reify ι x)))
wkTmPresL {a = a ⇒ b} {t = t} w tLf
= λ w' y → L-cast (cong1 app (wkTmPres∙ w w' t)) refl (tLf (w ∙ w') y)
wkTmPresL {a = □ a} {t = t} w tLb
= λ w' e → L-cast (cong1 unbox (wkTmPres∙ w w' t)) refl (tLb (w ∙ w') e)
-- Lₛ is invariant under weakening
wkSubPresLₛ : {s : Sub Γ Δ} {δ : Sub' Γ Δ}
→ (w : Γ ⊆ Γ')
→ (sLδ : Lₛ Δ s δ)
→ Lₛ Δ (wkSub w s) (wkSub' Δ w δ)
wkSubPresLₛ {Δ = []} w []
= []
wkSubPresLₛ {Δ = _Δ `, _a} w (sLδ `, tLx)
= wkSubPresLₛ w sLδ `, wkTmPresL w tLx
wkSubPresLₛ {Δ = _Δ #} w (lock sLδ e)
= lock (wkSubPresLₛ (factorWk e w) sLδ) (factorExt e w)
-- syntactic identity is related to semantic identity
idLₛ : Lₛ Δ idₛ (idₛ' Δ)
idLₛ {[]} = []
idLₛ {_Δ `, a} = wkSubPresLₛ fresh[ a ] idLₛ `, L-reflect var0
idLₛ {_Δ #} = lock idLₛ new
-----------------------------
-- The Fundamental Theorem --
-----------------------------
-- local lemmas for the proof of fundamental theorem
private
substVarPresL : (v : Var Δ a) {s : Sub Γ Δ} {δ : Sub' Γ Δ}
→ (sLδ : Lₛ Δ s δ)
→ L a (substVar s v) (substVar' v δ)
substVarPresL zero (_sLδ `, tLx) = tLx
substVarPresL (succ v) ( sLδ `, _tLx) = substVarPresL v sLδ
beta-lemma : (w : Γ ⊆ Γ') (s : Sub Γ Δ) (t : Tm (Δ `, a) b) (u : Tm Γ' a)
→ app (wkTm w (substTm s (lam t))) u ≈ substTm (wkSub w s `, u) t
beta-lemma w s t u = ≈-trans (≈-reflexive (cong1 app (cong lam (trans
(sym (nat-substTm t (keepₛ s) (keep w)))
(cong (λ p → substTm (p `, var0) t)
(trans
(wkSubPres∙ fresh (keep w) s)
(cong1 wkSub (cong drop (leftIdWk w)))))))))
(≈-trans
(⟶-to-≈ (red-fun _ _))
(≈-trans
(≈-reflexive (substTmPres∙ _ _ t))
(substTmPres≈ t
(cong-`,≈ₛ
(≈ₛ-trans
(≈ₛ-reflexive˘ (coh-trimSub-wkSub s _ _))
(≈ₛ-trans (≈ₛ-reflexive (coh-trimSub-wkSub s idₛ w)) (≈ₛ-sym (rightIdSub _))))
≈-refl))))
lCtxₛ'∼lCtxₛ : {s : Sub Γ Δ} {δ : Sub' Γ Δ}
→ (e : CExt Δ ΔL ΔR)
→ (sLδ : Lₛ Δ s δ)
→ lCtxₛ' e δ ≡ lCtxₛ e s
lCtxₛ'∼lCtxₛ nil _sLδ = refl
lCtxₛ'∼lCtxₛ (ext e) (sLδ `, _tLx) = lCtxₛ'∼lCtxₛ e sLδ
lCtxₛ'∼lCtxₛ (ext#- e) (lock sLδ _e') = lCtxₛ'∼lCtxₛ e sLδ
rCtxₛ'∼rCtxₛ : {s : Sub Γ Δ} {δ : Sub' Γ Δ}
→ (e : CExt Δ ΔL ΔR)
→ (sLδ : Lₛ Δ s δ)
→ rCtxₛ' e δ ≡ rCtxₛ e s
rCtxₛ'∼rCtxₛ nil _sLδ = refl
rCtxₛ'∼rCtxₛ (ext e) (sLδ `, _tLx) = rCtxₛ'∼rCtxₛ e sLδ
rCtxₛ'∼rCtxₛ (ext#- e) (lock sLδ _e') = cong (_,, _) (rCtxₛ'∼rCtxₛ e sLδ)
factorSubPresLₛ : {s : Sub Γ Δ} {δ : Sub' Γ Δ}
→ (e : CExt Δ ΔL ΔR)
→ (sLδ : Lₛ Δ s δ)
→ Lₛ ΔL (factorSubₛ e s) (subst (λ Γ → Sub' Γ ΔL) (lCtxₛ'∼lCtxₛ e sLδ) (factorSubₛ' e δ))
factorSubPresLₛ nil sLδ = sLδ
factorSubPresLₛ (ext e) (sLδ `, _tLx) = factorSubPresLₛ e sLδ
factorSubPresLₛ (ext#- e) (lock sLδ _e') = factorSubPresLₛ e sLδ
module _ (w : Γ ⊆ Γ') (s : Sub Γ Δ) (t : Tm (Δ #) a) (e : CExt Θ Γ' ΓR') where
unbox-box-reduces : unbox (wkTm w (substTm s (box t))) e ≈ substTm (lock (wkSub w s) e) t
unbox-box-reduces = begin
unbox (wkTm w (substTm s (box t))) e
≡⟨⟩
unbox (box (wkTm (keep# w) (substTm (lock s new) t))) e
≈⟨ ⟶-to-≈ (red-box _ _) ⟩
substTm (lock idₛ e) (wkTm (keep# w) (substTm (lock s new) t))
≡⟨ cong (substTm _) (sym (nat-substTm t _ _)) ⟩
substTm (lock idₛ e) (substTm (wkSub (keep# w) (lock s new)) t)
≡⟨ substTmPres∙ _ _ t ⟩
substTm (wkSub (keep# w) (lock s new) ∙ₛ (lock idₛ e) ) t
≡⟨⟩
substTm (lock (wkSub w s ∙ₛ idₛ) (extRAssoc nil e)) t
≈˘⟨ substTmPres≈ t (cong-lock≈ₛ′ (rightIdSub (wkSub w s))) ⟩
substTm (lock (wkSub w s) e) t ∎
where
open import Relation.Binary.Reasoning.Setoid (Tm-setoid Θ a)
-- The Fundamental theorem, for terms
Fund : Tm Δ a → Set
Fund {Δ} {a} t = ∀ {Γ} {s : Sub Γ Δ} {δ : Sub' Γ Δ}
→ (sLδ : Lₛ Δ s δ)
→ L a (substTm s t) (eval t δ)
fund : (t : Tm Γ a) → Fund t
fund (var v) sLδ
= substVarPresL v sLδ
fund (lam t) {_Γ} {s} sLδ {_Γ'} {u}
= λ w uLx → L-prepend (beta-lemma w s t u)
(fund t {s = wkSub w s `, u} (wkSubPresLₛ w sLδ `, uLx))
fund (app t u) {_Γ} {s} sLδ
= L-cast
(cong1 app (sym (wkTmPresId (substTm s t))))
refl
(fund t sLδ idWk (fund u sLδ))
fund (box t) {_Γ} {s} sLδ
= λ w e → L-prepend (unbox-box-reduces w s t e) (fund t (lock (wkSubPresLₛ w sLδ) e))
fund (unbox {ΔL} t e) {Γ} {s} {δ} sLδ
= L-cast
(cong-unbox≡′ (sym (wkTmPresId (substTm (factorSubₛ e s) t))))
(dcong₄ (λ Γ δ w r → eval t {Γ} δ .apply {Γ} w r)
(lCtxₛ'∼lCtxₛ e sLδ)
refl
(subst-application′′ idWk (lCtxₛ'∼lCtxₛ e sLδ))
(trans (subst-application′ -,_ (lCtxₛ'∼lCtxₛ e sLδ)) (dcong₂ _,_ (rCtxₛ'∼rCtxₛ e sLδ) (ExtIsProp _ _))))
(fund t
{s = factorSubₛ e s}
{δ = subst (λ Δ → Sub' Δ ΔL) (lCtxₛ'∼lCtxₛ e sLδ) (factorSubₛ' e δ)}
(factorSubPresLₛ e sLδ)
idWk[ lCtxₛ e s ]
(subst₂ (CExt Γ) (lCtxₛ'∼lCtxₛ e sLδ) (rCtxₛ'∼rCtxₛ e sLδ) (factorExtₛ' e δ)))
-- reduction trace for norm
trace : (t : Tm Γ a) → t ≈ embNf (norm t)
trace t = L-build (L-prepend (substTmPresId t) (fund t idLₛ))
norm-sound : norm t ≡ norm u → t ≈ u
norm-sound {t = t} {u} t'≡u' = ≈-trans (trace t) (≡-≈-trans˘ (cong embNf t'≡u') (trace u))
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.