------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via
-- `Relation.Binary.Indexed.Heterogeneous`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Heterogeneous.Definitions where
open import Level
import Relation.Binary.Core as B
import Relation.Binary.Definitions as B
import Relation.Binary.PropositionalEquality.Core as P
open import Relation.Binary.Indexed.Heterogeneous.Core
private
variable
i a ℓ : Level
I : Set i
------------------------------------------------------------------------
-- Simple properties of indexed binary relations
Reflexive : (A : I → Set a) → IRel A ℓ → Set _
Reflexive _ _∼_ = ∀ {i} → B.Reflexive (_∼_ {i})
Symmetric : (A : I → Set a) → IRel A ℓ → Set _
Symmetric _ _∼_ = ∀ {i j} → B.Sym (_∼_ {i} {j}) _∼_
Transitive : (A : I → Set a) → IRel A ℓ → Set _
Transitive _ _∼_ = ∀ {i j k} → B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k})
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.