------------------------------------------------------------------------ -- The Agda standard library -- -- Natural numbers, basic types and operations ------------------------------------------------------------------------ -- See README.Data.Nat for examples of how to use and reason about -- naturals. {-# OPTIONS --without-K --safe #-} module Data.Nat.Base where open import Data.Bool.Base using (Bool; true; false) open import Data.Empty using (⊥) open import Data.Unit.Base using (⊤; tt) open import Level using (0ℓ) open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation.Core using (contradiction) open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Types open import Agda.Builtin.Nat public using (zero; suc) renaming (Nat to ℕ) ------------------------------------------------------------------------ -- Boolean equality relation open import Agda.Builtin.Nat public using () renaming (_==_ to _≡ᵇ_) ------------------------------------------------------------------------ -- Boolean ordering relation open import Agda.Builtin.Nat public using () renaming (_<_ to _<ᵇ_) infix 4 _≤ᵇ_ _≤ᵇ_ : (m n : ℕ) → Bool zero ≤ᵇ n = true suc m ≤ᵇ n = m <ᵇ n ------------------------------------------------------------------------ -- Standard ordering relations infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≮_ _≱_ _≯_ data _≤_ : Rel ℕ 0ℓ where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n _<_ : Rel ℕ 0ℓ m < n = suc m ≤ n _≥_ : Rel ℕ 0ℓ m ≥ n = n ≤ m _>_ : Rel ℕ 0ℓ m > n = n < m _≰_ : Rel ℕ 0ℓ a ≰ b = ¬ a ≤ b _≮_ : Rel ℕ 0ℓ a ≮ b = ¬ a < b _≱_ : Rel ℕ 0ℓ a ≱ b = ¬ a ≥ b _≯_ : Rel ℕ 0ℓ a ≯ b = ¬ a > b ------------------------------------------------------------------------ -- Simple predicates -- Defining `NonZero` in terms of `⊤` and `⊥` allows Agda to -- automatically infer nonZero-ness for any natural of the form -- `suc n`. Consequently in many circumstances this eliminates the need -- to explicitly pass a proof when the NonZero argument is either an -- implicit or an instance argument. -- -- It could alternatively be defined using a datatype with an instance -- constructor but then it would not be inferrable when passed as an -- implicit argument. -- -- See `Data.Nat.DivMod` for an example. NonZero : ℕ → Set NonZero zero = ⊥ NonZero (suc x) = ⊤ -- Constructors ≢-nonZero : ∀ {n} → n ≢ 0 → NonZero n ≢-nonZero {zero} 0≢0 = 0≢0 refl ≢-nonZero {suc n} n≢0 = tt >-nonZero : ∀ {n} → n > 0 → NonZero n >-nonZero (s≤s 0<n) = tt ------------------------------------------------------------------------ -- Arithmetic open import Agda.Builtin.Nat public using (_+_; _*_) renaming (_-_ to _∸_) pred : ℕ → ℕ pred n = n ∸ 1 infixl 7 _⊓_ infixl 6 _+⋎_ _⊔_ -- Argument-swapping addition. Used by Data.Vec._⋎_. _+⋎_ : ℕ → ℕ → ℕ zero +⋎ n = n suc m +⋎ n = suc (n +⋎ m) -- Max. _⊔_ : ℕ → ℕ → ℕ zero ⊔ n = n suc m ⊔ zero = suc m suc m ⊔ suc n = suc (m ⊔ n) -- Min. _⊓_ : ℕ → ℕ → ℕ zero ⊓ n = zero suc m ⊓ zero = zero suc m ⊓ suc n = suc (m ⊓ n) -- Division by 2, rounded downwards. ⌊_/2⌋ : ℕ → ℕ ⌊ 0 /2⌋ = 0 ⌊ 1 /2⌋ = 0 ⌊ suc (suc n) /2⌋ = suc ⌊ n /2⌋ -- Division by 2, rounded upwards. ⌈_/2⌉ : ℕ → ℕ ⌈ n /2⌉ = ⌊ suc n /2⌋ -- Naïve exponentiation _^_ : ℕ → ℕ → ℕ x ^ zero = 1 x ^ suc n = x * x ^ n -- Distance ∣_-_∣ : ℕ → ℕ → ℕ ∣ zero - y ∣ = y ∣ x - zero ∣ = x ∣ suc x - suc y ∣ = ∣ x - y ∣ ------------------------------------------------------------------------ -- Alternative definition of _≤_ -- The following definition of _≤_ is more suitable for well-founded -- induction (see Data.Nat.Induction) infix 4 _≤′_ _<′_ _≥′_ _>′_ data _≤′_ (m : ℕ) : ℕ → Set where ≤′-refl : m ≤′ m ≤′-step : ∀ {n} (m≤′n : m ≤′ n) → m ≤′ suc n _<′_ : Rel ℕ 0ℓ m <′ n = suc m ≤′ n _≥′_ : Rel ℕ 0ℓ m ≥′ n = n ≤′ m _>′_ : Rel ℕ 0ℓ m >′ n = n <′ m ------------------------------------------------------------------------ -- Another alternative definition of _≤_ record _≤″_ (m n : ℕ) : Set where constructor less-than-or-equal field {k} : ℕ proof : m + k ≡ n infix 4 _≤″_ _<″_ _≥″_ _>″_ _<″_ : Rel ℕ 0ℓ m <″ n = suc m ≤″ n _≥″_ : Rel ℕ 0ℓ m ≥″ n = n ≤″ m _>″_ : Rel ℕ 0ℓ m >″ n = n <″ m ------------------------------------------------------------------------ -- Another alternative definition of _≤_ -- Useful for induction when you have an upper bound. data _≤‴_ : ℕ → ℕ → Set where ≤‴-refl : ∀{m} → m ≤‴ m ≤‴-step : ∀{m n} → suc m ≤‴ n → m ≤‴ n infix 4 _≤‴_ _<‴_ _≥‴_ _>‴_ _<‴_ : Rel ℕ 0ℓ m <‴ n = suc m ≤‴ n _≥‴_ : Rel ℕ 0ℓ m ≥‴ n = n ≤‴ m _>‴_ : Rel ℕ 0ℓ m >‴ n = n <‴ m ------------------------------------------------------------------------ -- A comparison view. Taken from "View from the left" -- (McBride/McKinna); details may differ. data Ordering : Rel ℕ 0ℓ where less : ∀ m k → Ordering m (suc (m + k)) equal : ∀ m → Ordering m m greater : ∀ m k → Ordering (suc (m + k)) m compare : ∀ m n → Ordering m n compare zero zero = equal zero compare (suc m) zero = greater zero m compare zero (suc n) = less zero n compare (suc m) (suc n) with compare m n ... | less m k = less (suc m) k ... | equal m = equal (suc m) ... | greater n k = greater (suc n) k
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.