------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions for types of functions that only require an equality -- relation over the co-domain. ------------------------------------------------------------------------ -- The contents of this file should usually be accessed from `Function`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Function.Definitions.Core2 {b ℓ₂} {B : Set b} (_≈₂_ : Rel B ℓ₂) where open import Data.Product using (∃) open import Level using (Level; _⊔_) ------------------------------------------------------------------------ -- Definitions Surjective : ∀ {a} {A : Set a} → (A → B) → Set (a ⊔ b ⊔ ℓ₂) Surjective f = ∀ y → ∃ λ x → f x ≈₂ y -- (Note the name `LeftInverse` is used for the bundle) Inverseˡ : ∀ {a} {A : Set a} → (A → B) → (B → A) → Set (b ⊔ ℓ₂) Inverseˡ f g = ∀ x → f (g x) ≈₂ x
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.