{-# OPTIONS --safe --without-K #-} module IS4.Term.Reduction where open import Relation.Binary using (Preorder) import Relation.Binary.Construct.Closure.ReflexiveTransitive as ReflexiveTransitive open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties using (preorder) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; trans ; cong ; cong₂) import RUtil open import IS4.Term.Base open ReflexiveTransitive public using (ε ; _◅_) ------------------- -- Reduction rules ------------------- data _⟶_ : Tm Γ a → Tm Γ a → Set where red-fun : (t : Tm (Γ `, a) b) (u : Tm Γ a) → app (lam t) u ⟶ substTm (idₛ `, u) t exp-fun : (t : Tm Γ (a ⇒ b)) → t ⟶ lam (app (wkTm fresh t) (var zero)) red-box : (t : Tm (ΓL #) a) (e : CExt Γ ΓL ΓR) → unbox (box t) e ⟶ substTm (lock idₛ e) t exp-box : (t : Tm Γ (□ a)) → t ⟶ box (unbox t new) cong-lam : {t t' : Tm (Γ `, a) b} → t ⟶ t' → lam t ⟶ lam t' cong-app1 : {t t' : Tm Γ (a ⇒ b)} {u : Tm Γ a} → t ⟶ t' → app t u ⟶ app t' u cong-app2 : {t : Tm Γ (a ⇒ b)} {u u' : Tm Γ a} → u ⟶ u' → app t u ⟶ app t u' cong-box : {t t' : Tm (Γ #) a} → t ⟶ t' → box t ⟶ box t' cong-unbox : {t t' : Tm ΓL (□ a)} {e : CExt Γ ΓL ΓR} → t ⟶ t' → unbox t e ⟶ unbox t' e shift-unbox : {ΓLL : Ctx} {a : Ty} (t : Tm ΓLL (□ a)) {ΓLR ΓL : Ctx} (w : LFExt ΓL ΓLL ΓLR) {ΓR Γ : Ctx} (e : CExt Γ ΓL ΓR) → unbox t (extRAssoc (upLFExt w) e) ⟶ unbox (wkTm (LFExtToWk w) t) e module _ {Γ : Ctx} {a : Ty} where open RUtil (_⟶_ {Γ} {a}) public -- zero or more steps of reduction Tm-preorder : (Γ : Ctx) → (a : Ty) → Preorder _ _ _ Tm-preorder Γ a = preorder (_⟶_ {Γ} {a}) module _ {Γ : Ctx} {a : Ty} where open Preorder (Tm-preorder Γ a) public using () renaming (_∼_ to _⟶*_ ; refl to ⟶*-refl ; reflexive to none ; trans to multi) single : (t⟶t' : t ⟶ t') → t ⟶* t' single t⟶t' = t⟶t' ◅ ε single-≡ : (t⟶t' : t ⟶ t') → (t'≡t'' : t' ≡ t'') → t ⟶* t'' single-≡ t⟶t' refl = single t⟶t' ≡-single : (t≡t' : t ≡ t') → (t'⟶t'' : t' ⟶ t'') → t ⟶* t'' ≡-single refl t'⟶t'' = single t'⟶t'' ≡-single-≡ : (t≡t' : t ≡ t') → (t'⟶t'' : t' ⟶ t'') → (t''≡t''' : t'' ≡ t''') → t ⟶* t''' ≡-single-≡ refl t'⟶t'' refl = single t'⟶t'' multi-≡ : (t⟶*t' : t ⟶* t') → (t'≡t'' : t' ≡ t'') → t ⟶* t'' multi-≡ t⟶*t' refl = t⟶*t' ≡-multi : (t≡t' : t ≡ t') → (t'⟶*t'' : t' ⟶* t'') → t ⟶* t'' ≡-multi refl t'⟶*t'' = t'⟶*t'' ≡-multi-≡ : (t≡t' : t ≡ t') → (t'⟶*t'' : t' ⟶* t'') → (t''≡t''' : t'' ≡ t''') → t ⟶* t''' ≡-multi-≡ refl t'⟶*t'' refl = t'⟶*t'' ⟶-multi : (t⟶t' : t ⟶ t') → (t'⟶*t'' : t' ⟶* t'') → t ⟶* t'' ⟶-multi t⟶t' t'⟶*t'' = multi (single t⟶t') t'⟶*t'' multi-⟶ : (t⟶*t' : t ⟶* t') → (t'⟶t'' : t' ⟶ t'') → t ⟶* t'' multi-⟶ t⟶*t' t'⟶t'' = multi t⟶*t' (single t'⟶t'') module _ {t : Tm Γ a → Tm Δ b} (cong-t : ∀ {u u' : Tm Γ a} → (u⟶u' : u ⟶ u') → t u ⟶* t u') where cong-⟶*-to-cong-⟶* : ∀ (u⟶*u' : u ⟶* u') → t u ⟶* t u' cong-⟶*-to-cong-⟶* ε = ε cong-⟶*-to-cong-⟶* (u⟶u'' ◅ u''⟶*u') = multi (cong-t u⟶u'') (cong-⟶*-to-cong-⟶* u''⟶*u') cong-⟶-to-cong-⟶* : {t : Tm Γ a → Tm Δ b} (cong-t : ∀ {u u' : Tm Γ a} → (u⟶u' : u ⟶ u') → t u ⟶ t u') (u⟶*u' : u ⟶* u') → t u ⟶* t u' cong-⟶-to-cong-⟶* cong-t = cong-⟶*-to-cong-⟶* (λ u⟶u' → single (cong-t u⟶u')) cong-app : {t t' : Tm Γ (a ⇒ b)} {u u' : Tm Γ a} → t ⟶ t' → u ⟶ u' → app t u ⟶* app t' u' cong-app t⟶t' u⟶u' = cong-app1 t⟶t' ◅ cong-app2 u⟶u' ◅ ε cong-box* : {t t' : Tm (Γ #) a} → t ⟶* t' → box t ⟶* box t' cong-box* = cong-⟶-to-cong-⟶* cong-box cong-unbox* : {t t' : Tm ΓL (□ a)} {e : CExt Γ ΓL ΓR} → t ⟶* t' → unbox t e ⟶* unbox t' e cong-unbox* = cong-⟶-to-cong-⟶* cong-unbox cong-lam* : {t t' : Tm (Γ `, a) b} → t ⟶* t' → lam t ⟶* lam t' cong-lam* = cong-⟶-to-cong-⟶* cong-lam cong-app*≡ : {t t' : Tm Γ (a ⇒ b)} {u u' : Tm Γ a} → t ⟶* t' → u ≡ u' → app t u ⟶* app t' u' cong-app*≡ t⟶*t' refl = cong-⟶-to-cong-⟶* cong-app1 t⟶*t' cong-app1* : {t t' : Tm Γ (a ⇒ b)} {u : Tm Γ a} → t ⟶* t' → app t u ⟶* app t' u cong-app1* t⟶*t' = cong-app*≡ t⟶*t' refl cong-app≡* : {t t' : Tm Γ (a ⇒ b)} {u u' : Tm Γ a} → t ≡ t' → u ⟶* u' → app t u ⟶* app t' u' cong-app≡* refl u⟶*u' = cong-⟶-to-cong-⟶* cong-app2 u⟶*u' cong-app2* : {t : Tm Γ (a ⇒ b)} {u u' : Tm Γ a} → u ⟶* u' → app t u ⟶* app t u' cong-app2* u⟶*u' = cong-app≡* refl u⟶*u' cong-app* : {t t' : Tm Γ (a ⇒ b)} {u u' : Tm Γ a} → t ⟶* t' → u ⟶* u' → app t u ⟶* app t' u' cong-app* t⟶*t' u⟶*u' = multi (cong-app1* t⟶*t') (cong-app2* u⟶*u')
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.