------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via `Relation.Binary`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Definitions where
open import Agda.Builtin.Equality using (_≡_)
open import Data.Maybe.Base using (Maybe)
open import Data.Product using (_×_)
open import Data.Sum.Base using (_⊎_)
open import Function.Base using (_on_; flip)
open import Level
open import Relation.Binary.Core
open import Relation.Nullary using (Dec; ¬_)
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- Definitions
------------------------------------------------------------------------
-- Reflexivity - defined without an underlying equality. It could
-- alternatively be defined as `_≈_ ⇒ _∼_` for some equality `_≈_`.
-- Confusingly the convention in the library is to use the name "refl"
-- for proofs of Reflexive and `reflexive` for proofs of type `_≈_ ⇒ _∼_`,
-- e.g. in the definition of `IsEquivalence` later in this file. This
-- convention is a legacy from the early days of the library.
Reflexive : Rel A ℓ → Set _
Reflexive _∼_ = ∀ {x} → x ∼ x
-- Generalised symmetry.
Sym : REL A B ℓ₁ → REL B A ℓ₂ → Set _
Sym P Q = P ⇒ flip Q
-- Symmetry.
Symmetric : Rel A ℓ → Set _
Symmetric _∼_ = Sym _∼_ _∼_
-- Generalised transitivity.
Trans : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k
-- A flipped variant of generalised transitivity.
TransFlip : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k
-- Transitivity.
Transitive : Rel A ℓ → Set _
Transitive _∼_ = Trans _∼_ _∼_ _∼_
-- Generalised antisymmetry
Antisym : REL A B ℓ₁ → REL B A ℓ₂ → REL A B ℓ₃ → Set _
Antisym R S E = ∀ {i j} → R i j → S j i → E i j
-- Antisymmetry.
Antisymmetric : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Antisymmetric _≈_ _≤_ = Antisym _≤_ _≤_ _≈_
-- Irreflexivity - this is defined terms of the underlying equality.
Irreflexive : REL A B ℓ₁ → REL A B ℓ₂ → Set _
Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y)
-- Asymmetry.
Asymmetric : Rel A ℓ → Set _
Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x)
-- Generalised connex - exactly one of the two relations holds.
Connex : REL A B ℓ₁ → REL B A ℓ₂ → Set _
Connex P Q = ∀ x y → P x y ⊎ Q y x
-- Totality.
Total : Rel A ℓ → Set _
Total _∼_ = Connex _∼_ _∼_
-- Generalised trichotomy - exactly one of three types has a witness.
data Tri (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where
tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C
tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C
tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C
-- Trichotomy.
Trichotomous : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y)
where _>_ = flip _<_
-- Generalised maximum element.
Max : REL A B ℓ → B → Set _
Max _≤_ T = ∀ x → x ≤ T
-- Maximum element.
Maximum : Rel A ℓ → A → Set _
Maximum = Max
-- Generalised minimum element.
Min : REL A B ℓ → A → Set _
Min R = Max (flip R)
-- Minimum element.
Minimum : Rel A ℓ → A → Set _
Minimum = Min
-- Unary relations respecting a binary relation.
_⟶_Respects_ : (A → Set ℓ₁) → (B → Set ℓ₂) → REL A B ℓ₃ → Set _
P ⟶ Q Respects _∼_ = ∀ {x y} → x ∼ y → P x → Q y
-- Unary relation respects a binary relation.
_Respects_ : (A → Set ℓ₁) → Rel A ℓ₂ → Set _
P Respects _∼_ = P ⟶ P Respects _∼_
-- Right respecting - relatedness is preserved on the right by equality.
_Respectsʳ_ : REL A B ℓ₁ → Rel B ℓ₂ → Set _
_∼_ Respectsʳ _≈_ = ∀ {x} → (x ∼_) Respects _≈_
-- Left respecting - relatedness is preserved on the left by equality.
_Respectsˡ_ : REL A B ℓ₁ → Rel A ℓ₂ → Set _
P Respectsˡ _∼_ = ∀ {y} → (flip P y) Respects _∼_
-- Respecting - relatedness is preserved on both sides by equality
_Respects₂_ : Rel A ℓ₁ → Rel A ℓ₂ → Set _
P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_)
-- Substitutivity - any two related elements satisfy exactly the same
-- set of unary relations. Note that only the various derivatives
-- of propositional equality can satisfy this property.
Substitutive : Rel A ℓ₁ → (ℓ₂ : Level) → Set _
Substitutive {A = A} _∼_ p = (P : A → Set p) → P Respects _∼_
-- Decidability - it is possible to determine whether a given pair of
-- elements are related.
Decidable : REL A B ℓ → Set _
Decidable _∼_ = ∀ x y → Dec (x ∼ y)
-- Weak decidability - it is sometimes possible to determine if a given
-- pair of elements are related.
WeaklyDecidable : REL A B ℓ → Set _
WeaklyDecidable _∼_ = ∀ x y → Maybe (x ∼ y)
-- Propositional equality is decidable for the type.
DecidableEquality : (A : Set a) → Set _
DecidableEquality A = Decidable {A = A} _≡_
-- Irrelevancy - all proofs that a given pair of elements are related
-- are indistinguishable.
Irrelevant : REL A B ℓ → Set _
Irrelevant _∼_ = ∀ {x y} (a b : x ∼ y) → a ≡ b
-- Recomputability - we can rebuild a relevant proof given an
-- irrelevant one.
Recomputable : REL A B ℓ → Set _
Recomputable _∼_ = ∀ {x y} → .(x ∼ y) → x ∼ y
-- Universal - all pairs of elements are related
Universal : REL A B ℓ → Set _
Universal _∼_ = ∀ x y → x ∼ y
-- Non-emptiness - at least one pair of elements are related.
record NonEmpty {A : Set a} {B : Set b}
(T : REL A B ℓ) : Set (a ⊔ b ⊔ ℓ) where
constructor nonEmpty
field
{x} : A
{y} : B
proof : T x y
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.1
Conn = Connex
{-# WARNING_ON_USAGE Conn
"Warning: Conn was deprecated in v1.1.
Please use Connex instead."
#-}
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.