------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via
-- `Relation.Binary.Indexed.Heterogeneous`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Heterogeneous.Bundles where
open import Function.Base
open import Level using (suc; _⊔_)
open import Relation.Binary using (_⇒_)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
open import Relation.Binary.Indexed.Heterogeneous.Core
open import Relation.Binary.Indexed.Heterogeneous.Structures
------------------------------------------------------------------------
-- Definitions
record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : I → Set c
_≈_ : IRel Carrier ℓ
isEquivalence : IsIndexedEquivalence Carrier _≈_
open IsIndexedEquivalence isEquivalence public
record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _∼_
field
Carrier : I → Set c
_≈_ : IRel Carrier ℓ₁ -- The underlying equality.
_∼_ : IRel Carrier ℓ₂ -- The relation.
isPreorder : IsIndexedPreorder Carrier _≈_ _∼_
open IsIndexedPreorder isPreorder public
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.