------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by preorders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.Preorder {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open import Function open import Data.Product as Prod open Preorder P ------------------------------------------------------------------------ -- The inverse relation is also a preorder. invIsPreorder : IsPreorder _≈_ (flip _∼_) invIsPreorder = record { isEquivalence = isEquivalence ; reflexive = reflexive ∘ Eq.sym ; trans = flip trans } invPreorder : Preorder p₁ p₂ p₃ invPreorder = record { isPreorder = invIsPreorder } ------------------------------------------------------------------------ -- For every preorder there is an induced equivalence InducedEquivalence : Setoid _ _ InducedEquivalence = record { _≈_ = λ x y → x ∼ y × y ∼ x ; isEquivalence = record { refl = (refl , refl) ; sym = swap ; trans = Prod.zip trans (flip trans) } }
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.