------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality - Algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality.Algebra where open import Algebra open import Level open import Relation.Binary.PropositionalEquality.Core open import Relation.Binary.PropositionalEquality.Properties private variable a : Level A : Set a ------------------------------------------------------------------------ -- Any operation forms a magma over _≡_ isMagma : (_∙_ : Op₂ A) → IsMagma _≡_ _∙_ isMagma _∙_ = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _∙_ } magma : (_∙_ : Op₂ A) → Magma _ _ magma _∙_ = record { isMagma = isMagma _∙_ }
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.