------------------------------------------------------------------------ -- The Agda standard library -- -- Morphisms between algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Algebra.Morphism.Structures where open import Algebra.Core open import Algebra.Bundles import Algebra.Morphism.Definitions as MorphismDefinitions open import Level using (Level; _⊔_) import Function.Definitions as FunctionDefinitions open import Relation.Binary.Morphism.Structures private variable a b ℓ₁ ℓ₂ : Level ------------------------------------------------------------------------ -- Morphisms over magma-like structures ------------------------------------------------------------------------ module MagmaMorphisms (M₁ : RawMagma a ℓ₁) (M₂ : RawMagma b ℓ₂) where open RawMagma M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_) open RawMagma M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsMagmaHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧ homo : Homomorphic₂ ⟦_⟧ _∙_ _◦_ open IsRelHomomorphism isRelHomomorphism public renaming (cong to ⟦⟧-cong) record IsMagmaMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMagmaHomomorphism : IsMagmaHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsMagmaHomomorphism isMagmaHomomorphism public isRelMonomorphism : IsRelMonomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelMonomorphism = record { isHomomorphism = isRelHomomorphism ; injective = injective } record IsMagmaIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isMagmaMonomorphism : IsMagmaMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsMagmaMonomorphism isMagmaMonomorphism public isRelIsomorphism : IsRelIsomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelIsomorphism = record { isMonomorphism = isRelMonomorphism ; surjective = surjective } ------------------------------------------------------------------------ -- Morphisms over monoid-like structures ------------------------------------------------------------------------ module MonoidMorphisms (M₁ : RawMonoid a ℓ₁) (M₂ : RawMonoid b ℓ₂) where open RawMonoid M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; ε to ε₁) open RawMonoid M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; ε to ε₂) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open MagmaMorphisms (RawMonoid.rawMagma M₁) (RawMonoid.rawMagma M₂) record IsMonoidHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMagmaHomomorphism : IsMagmaHomomorphism ⟦_⟧ ε-homo : Homomorphic₀ ⟦_⟧ ε₁ ε₂ open IsMagmaHomomorphism isMagmaHomomorphism public record IsMonoidMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoidHomomorphism : IsMonoidHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsMonoidHomomorphism isMonoidHomomorphism public isMagmaMonomorphism : IsMagmaMonomorphism ⟦_⟧ isMagmaMonomorphism = record { isMagmaHomomorphism = isMagmaHomomorphism ; injective = injective } open IsMagmaMonomorphism isMagmaMonomorphism public using (isRelMonomorphism) record IsMonoidIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoidMonomorphism : IsMonoidMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsMonoidMonomorphism isMonoidMonomorphism public isMagmaIsomorphism : IsMagmaIsomorphism ⟦_⟧ isMagmaIsomorphism = record { isMagmaMonomorphism = isMagmaMonomorphism ; surjective = surjective } open IsMagmaIsomorphism isMagmaIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over group-like structures ------------------------------------------------------------------------ module GroupMorphisms (G₁ : RawGroup a ℓ₁) (G₂ : RawGroup b ℓ₂) where open RawGroup G₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; _⁻¹ to _⁻¹₁; ε to ε₁) open RawGroup G₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; _⁻¹ to _⁻¹₂; ε to ε₂) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open MagmaMorphisms (RawGroup.rawMagma G₁) (RawGroup.rawMagma G₂) open MonoidMorphisms (RawGroup.rawMonoid G₁) (RawGroup.rawMonoid G₂) record IsGroupHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoidHomomorphism : IsMonoidHomomorphism ⟦_⟧ ⁻¹-homo : Homomorphic₁ ⟦_⟧ _⁻¹₁ _⁻¹₂ open IsMonoidHomomorphism isMonoidHomomorphism public record IsGroupMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isGroupHomomorphism : IsGroupHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsGroupHomomorphism isGroupHomomorphism renaming (homo to ∙-homo) public isMonoidMonomorphism : IsMonoidMonomorphism ⟦_⟧ isMonoidMonomorphism = record { isMonoidHomomorphism = isMonoidHomomorphism ; injective = injective } open IsMonoidMonomorphism isMonoidMonomorphism public using (isRelMonomorphism) record IsGroupIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isGroupMonomorphism : IsGroupMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsGroupMonomorphism isGroupMonomorphism public isMonoidIsomorphism : IsMonoidIsomorphism ⟦_⟧ isMonoidIsomorphism = record { isMonoidMonomorphism = isMonoidMonomorphism ; surjective = surjective } open IsMonoidIsomorphism isMonoidIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over near-semiring-like structures ------------------------------------------------------------------------ module NearSemiringMorphisms (R₁ : RawNearSemiring a ℓ₁) (R₂ : RawNearSemiring b ℓ₂) where open RawNearSemiring R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; +-rawMonoid to +-rawMonoid₁ ; *-rawMagma to *-rawMagma₁) open RawNearSemiring R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; +-rawMonoid to +-rawMonoid₂ ; *-rawMagma to *-rawMagma₂) private module + = MonoidMorphisms +-rawMonoid₁ +-rawMonoid₂ module * = MagmaMorphisms *-rawMagma₁ *-rawMagma₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsNearSemiringHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field +-isMonoidHomomorphism : +.IsMonoidHomomorphism ⟦_⟧ *-isMagmaHomomorphism : *.IsMagmaHomomorphism ⟦_⟧ open +.IsMonoidHomomorphism +-isMonoidHomomorphism renaming (homo to +-homo; ε-homo to 0#-homo) public open *.IsMagmaHomomorphism *-isMagmaHomomorphism renaming (homo to *-homo) public record IsNearSemiringMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isNearSemiringHomomorphism : IsNearSemiringHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsNearSemiringHomomorphism isNearSemiringHomomorphism public +-isMonoidMonomorphism : +.IsMonoidMonomorphism ⟦_⟧ +-isMonoidMonomorphism = record { isMonoidHomomorphism = +-isMonoidHomomorphism ; injective = injective } *-isMagmaMonomorphism : *.IsMagmaMonomorphism ⟦_⟧ *-isMagmaMonomorphism = record { isMagmaHomomorphism = *-isMagmaHomomorphism ; injective = injective } open *.IsMagmaMonomorphism *-isMagmaMonomorphism public using (isRelMonomorphism) record IsNearSemiringIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isNearSemiringMonomorphism : IsNearSemiringMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsNearSemiringMonomorphism isNearSemiringMonomorphism public +-isMonoidIsomorphism : +.IsMonoidIsomorphism ⟦_⟧ +-isMonoidIsomorphism = record { isMonoidMonomorphism = +-isMonoidMonomorphism ; surjective = surjective } *-isMagmaIsomorphism : *.IsMagmaIsomorphism ⟦_⟧ *-isMagmaIsomorphism = record { isMagmaMonomorphism = *-isMagmaMonomorphism ; surjective = surjective } open *.IsMagmaIsomorphism *-isMagmaIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over semiring-like structures ------------------------------------------------------------------------ module SemiringMorphisms (R₁ : RawSemiring a ℓ₁) (R₂ : RawSemiring b ℓ₂) where open RawSemiring R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; +-rawMonoid to +-rawMonoid₁ ; *-rawMonoid to *-rawMonoid₁) open RawSemiring R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; +-rawMonoid to +-rawMonoid₂ ; *-rawMonoid to *-rawMonoid₂) private module + = MonoidMorphisms +-rawMonoid₁ +-rawMonoid₂ module * = MonoidMorphisms *-rawMonoid₁ *-rawMonoid₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsSemiringHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field +-isMonoidHomomorphism : +.IsMonoidHomomorphism ⟦_⟧ *-isMonoidHomomorphism : *.IsMonoidHomomorphism ⟦_⟧ open +.IsMonoidHomomorphism +-isMonoidHomomorphism renaming (homo to +-homo; ε-homo to 0#-homo) public open *.IsMonoidHomomorphism *-isMonoidHomomorphism renaming (homo to *-homo; ε-homo to 1#-homo) public record IsSemiringMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isSemiringHomomorphism : IsSemiringHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsSemiringHomomorphism isSemiringHomomorphism public +-isMonoidMonomorphism : +.IsMonoidMonomorphism ⟦_⟧ +-isMonoidMonomorphism = record { isMonoidHomomorphism = +-isMonoidHomomorphism ; injective = injective } *-isMonoidMonomorphism : *.IsMonoidMonomorphism ⟦_⟧ *-isMonoidMonomorphism = record { isMonoidHomomorphism = *-isMonoidHomomorphism ; injective = injective } open *.IsMonoidMonomorphism *-isMonoidMonomorphism public using (isRelMonomorphism) record IsSemiringIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isSemiringMonomorphism : IsSemiringMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsSemiringMonomorphism isSemiringMonomorphism public +-isMonoidIsomorphism : +.IsMonoidIsomorphism ⟦_⟧ +-isMonoidIsomorphism = record { isMonoidMonomorphism = +-isMonoidMonomorphism ; surjective = surjective } *-isMonoidIsomorphism : *.IsMonoidIsomorphism ⟦_⟧ *-isMonoidIsomorphism = record { isMonoidMonomorphism = *-isMonoidMonomorphism ; surjective = surjective } open *.IsMonoidIsomorphism *-isMonoidIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over ring-like structures ------------------------------------------------------------------------ module RingMorphisms (R₁ : RawRing a ℓ₁) (R₂ : RawRing b ℓ₂) where open RawRing R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; *-rawMonoid to *-rawMonoid₁ ; +-rawGroup to +-rawGroup₁) open RawRing R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; *-rawMonoid to *-rawMonoid₂ ; +-rawGroup to +-rawGroup₂) module + = GroupMorphisms +-rawGroup₁ +-rawGroup₂ module * = MonoidMorphisms *-rawMonoid₁ *-rawMonoid₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsRingHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field +-isGroupHomomorphism : +.IsGroupHomomorphism ⟦_⟧ *-isMonoidHomomorphism : *.IsMonoidHomomorphism ⟦_⟧ open +.IsGroupHomomorphism +-isGroupHomomorphism renaming (homo to +-homo; ε-homo to 0#-homo) public open *.IsMonoidHomomorphism *-isMonoidHomomorphism renaming (homo to *-homo; ε-homo to 1#-homo) public record IsRingMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isRingHomomorphism : IsRingHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsRingHomomorphism isRingHomomorphism public +-isGroupMonomorphism : +.IsGroupMonomorphism ⟦_⟧ +-isGroupMonomorphism = record { isGroupHomomorphism = +-isGroupHomomorphism ; injective = injective } *-isMonoidMonomorphism : *.IsMonoidMonomorphism ⟦_⟧ *-isMonoidMonomorphism = record { isMonoidHomomorphism = *-isMonoidHomomorphism ; injective = injective } open *.IsMonoidMonomorphism *-isMonoidMonomorphism public using (isRelMonomorphism) record IsRingIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isRingMonomorphism : IsRingMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsRingMonomorphism isRingMonomorphism public +-isGroupIsomorphism : +.IsGroupIsomorphism ⟦_⟧ +-isGroupIsomorphism = record { isGroupMonomorphism = +-isGroupMonomorphism ; surjective = surjective } *-isMonoidIsomorphism : *.IsMonoidIsomorphism ⟦_⟧ *-isMonoidIsomorphism = record { isMonoidMonomorphism = *-isMonoidMonomorphism ; surjective = surjective } open *.IsMonoidIsomorphism *-isMonoidIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over lattice-like structures ------------------------------------------------------------------------ module LatticeMorphisms (L₁ : RawLattice a ℓ₁) (L₂ : RawLattice b ℓ₂) where open RawLattice L₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; ∧-rawMagma to ∧-rawMagma₁ ; ∨-rawMagma to ∨-rawMagma₁) open RawLattice L₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; ∧-rawMagma to ∧-rawMagma₂ ; ∨-rawMagma to ∨-rawMagma₂) module ∨ = MagmaMorphisms ∨-rawMagma₁ ∨-rawMagma₂ module ∧ = MagmaMorphisms ∧-rawMagma₁ ∧-rawMagma₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsLatticeHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field ∨-isMagmaHomomorphism : ∨.IsMagmaHomomorphism ⟦_⟧ ∧-isMagmaHomomorphism : ∧.IsMagmaHomomorphism ⟦_⟧ open ∨.IsMagmaHomomorphism ∨-isMagmaHomomorphism renaming (homo to ∨-homo) public open ∧.IsMagmaHomomorphism ∧-isMagmaHomomorphism renaming (homo to ∧-homo) public record IsLatticeMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isLatticeHomomorphism : IsLatticeHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsLatticeHomomorphism isLatticeHomomorphism public ∨-isMagmaMonomorphism : ∨.IsMagmaMonomorphism ⟦_⟧ ∨-isMagmaMonomorphism = record { isMagmaHomomorphism = ∨-isMagmaHomomorphism ; injective = injective } ∧-isMagmaMonomorphism : ∧.IsMagmaMonomorphism ⟦_⟧ ∧-isMagmaMonomorphism = record { isMagmaHomomorphism = ∧-isMagmaHomomorphism ; injective = injective } open ∧.IsMagmaMonomorphism ∧-isMagmaMonomorphism public using (isRelMonomorphism) record IsLatticeIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isLatticeMonomorphism : IsLatticeMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsLatticeMonomorphism isLatticeMonomorphism public ∨-isMagmaIsomorphism : ∨.IsMagmaIsomorphism ⟦_⟧ ∨-isMagmaIsomorphism = record { isMagmaMonomorphism = ∨-isMagmaMonomorphism ; surjective = surjective } ∧-isMagmaIsomorphism : ∧.IsMagmaIsomorphism ⟦_⟧ ∧-isMagmaIsomorphism = record { isMagmaMonomorphism = ∧-isMagmaMonomorphism ; surjective = surjective } open ∧.IsMagmaIsomorphism ∧-isMagmaIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Re-export contents of modules publicly open MagmaMorphisms public open MonoidMorphisms public open GroupMorphisms public open NearSemiringMorphisms public open SemiringMorphisms public open RingMorphisms public open LatticeMorphisms public
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.