{-# OPTIONS --without-K #-} module IK.Norm.Properties.Soundness.Trace where open import Data.Unit using (⊤ ; tt) open import Data.Product using (Σ ; _×_ ; _,_ ; ∃) open import Relation.Binary.PropositionalEquality open import PEUtil open import IK.Norm.Base open import IK.Norm.NbE.Model open import IK.Norm.NbE.Reification open import IK.Term quotTm : Tm' Γ a → Tm Γ a quotTm x = embNf (reify x) ----------------------- -- Logical Relations -- ----------------------- L : (a : Ty) → (t : Tm Γ a) → (x : Tm' Γ a) → Set L ι t n = t ⟶* quotTm n L {Γ} (a ⇒ b) t f = ∀ {Γ' : Ctx} {u : Tm Γ' a} {x : Tm' Γ' a} → (w : Γ ⊆ Γ') → (uLx : L a u x) → L b (app (wkTm w t) u) (f w x) L (□ a) t b = let box' x = b in L a (unbox t new) x data Lₛ {Γ : Ctx} : (Δ : Ctx) → Sub Γ Δ → Sub' Γ Δ → Set where [] : Lₛ [] [] tt _`,_ : {s : Sub Γ Δ} {δ : Sub' Γ Δ} {t : Tm Γ a} {x : Tm' Γ a} → (sLδ : Lₛ Δ s δ) → (tLx : L a t x) → Lₛ (Δ `, a) (s `, t) (δ , x) lock : {s : Sub Γ' Δ} {δ : Sub' Γ' Δ} → (sLδ : Lₛ Δ s δ) → (e : LFExt Γ (Γ' #) ΓR) → Lₛ (Δ #) (lock s e) (lock δ e) ---------------------------- -- Standard LR properties -- ---------------------------- -- prepend a reduction trace to the "trace builder" L L-prepend : {t : Tm Γ a} {x : Tm' Γ a} → (t⟶*u : t ⟶* u) → (uLx : L a u x) → L a t x L-prepend {a = ι} t⟶*u uLn = multi t⟶*u uLn L-prepend {a = a ⇒ b} t⟶*u uLf = λ w uRy → L-prepend (cong-app1* (wkTmPres⟶* w t⟶*u)) (uLf w uRy) L-prepend {a = □ a} t⟶*u uLb = L-prepend (cong-unbox* t⟶*u) uLb -- reduction-free version of L-prepend L-cast : {t u : Tm Γ a} {x : Tm' Γ a} → (t≡u : t ≡ u) → (uLx : L a u x) → L a t x L-cast refl uLx = uLx -- extract reduction trace from L L-build : {t : Tm Γ a} {x : Tm' Γ a} → (tLx : L a t x) → t ⟶* quotTm x -- a neutral element is related to its reflection L-reflect : (n : Ne Γ a) → L a (embNe n) (reflect n) L-build {a = ι} tLn = tLn L-build {a = a ⇒ b} tLf = ⟶-multi exp-fun (cong-lam* (L-build (tLf fresh (L-reflect {a = a} var0)))) L-build {a = □ a} tLb = ⟶-multi exp-box (cong-box* (L-build tLb)) L-reflect {a = ι} n = ⟶*-refl L-reflect {a = a ⇒ b} n {_Γ'} {_t} {x} = λ w tLx → L-prepend (cong-app≡* (nat-embNe w n) (L-build tLx)) (L-reflect (app (wkNe w n) (reify x))) L-reflect {a = □ a} n = L-reflect (unbox n new) -- L is invariant under weakening wkTmPresL : {t : Tm Γ a} {x : Tm' Γ a} → (w : Γ ⊆ Γ') → (tLx : L a t x) → L a (wkTm w t) (wkTm' w x) wkTmPresL {a = ι} {x = x} w tLn = multi-≡ (wkTmPres⟶* w tLn) (nat-embNf w (reify x)) wkTmPresL {a = a ⇒ b} {t = t} w tLf = λ w' y → L-cast (cong₂ app (wkTmPres∙ w w' t) refl) (tLf (w ∙ w') y) wkTmPresL {a = □ a} w tLb = wkTmPresL {a = a} (keep# w) tLb -- Lₛ is invariant under weakening wkSubPresLₛ : {s : Sub Γ Δ} {δ : Sub' Γ Δ} → (w : Γ ⊆ Γ') → (sLδ : Lₛ Δ s δ) → Lₛ Δ (wkSub w s) (wkSub' w δ) wkSubPresLₛ {Δ = []} w [] = [] wkSubPresLₛ {Δ = _Δ `, a} w (sLδ `, tLx) = wkSubPresLₛ w sLδ `, wkTmPresL {a = a} w tLx wkSubPresLₛ {Δ = _Δ #} w (lock sLδ e) = lock (wkSubPresLₛ (sliceLeft e w) sLδ) (wkLFExt e w) -- syntactic identity is related to semantic identity idLₛ : Lₛ Δ idₛ idₛ' idLₛ {[]} = [] idLₛ {_Δ `, a} = wkSubPresLₛ fresh[ a ] idLₛ `, L-reflect {a = a} var0 idLₛ {_Δ #} = lock idLₛ nil ----------------------------- -- The Fundamental Theorem -- ----------------------------- -- local lemmas for the proof of fundamental theorem private substVarPresL : (v : Var Δ a) {s : Sub Γ Δ} {δ : Sub' Γ Δ} → (sLδ : Lₛ Δ s δ) → L a (substVar s v) (substVar' v δ) substVarPresL zero (_sLδ `, tLx) = tLx substVarPresL (succ v) (sLδ `, _tLx) = substVarPresL v sLδ beta-lemma : (w : Γ ⊆ Γ') (s : Sub Γ Δ) (t : Tm (Δ `, a) b) (u : Tm Γ' a) → app (wkTm w (substTm s (lam t))) u ⟶* substTm (wkSub w s `, u) t beta-lemma w s t u = ≡-single-≡ (cong1 app (cong lam (trans (sym (nat-subsTm t (keepₛ s) (keep w))) (cong (λ p → substTm (p `, var0) t) (trans (wkSubPres∙ fresh (keep w) s) (cong1 wkSub (cong drop (leftIdWk w)))))))) red-fun (trans (substTmPres∙ _ _ t ) (cong (λ p → substTm (p `, u) t) (trans (sym (coh-trimSub-wkSub s _ _)) (trans (coh-trimSub-wkSub s idₛ w) (rightIdSub _))))) box-beta-lemma : (t : Tm (Γ #) a) → unbox (box t) new ⟶* t box-beta-lemma t = single-≡ red-box (wkTmPresId t) module _ {t : Tm Γ (□ a)} {b : Box (Tm'- a) Γ} where unboxPresL : (tLb : L (□ a) t b) → (e : LFExt Δ (Γ #) ΓR) → L a (unbox t e) (unbox' b e) unboxPresL tLb e = L-cast (unbox-universal t e) (wkTmPresL {a = a} (LFExtToWk e) tLb) -- The Fundamental theorem, for terms Fund : Tm Δ a → Set Fund {Δ} {a} t = ∀ {Γ} {s : Sub Γ Δ} {δ : Sub' Γ Δ} → (sLδ : Lₛ Δ s δ) → L a (substTm s t) (eval t δ) fund : (t : Tm Δ a) → Fund t fund (var v) sLδ = substVarPresL v sLδ fund (lam t) {_Γ} {s} sLδ {_Γ'} {u} = λ w uLx → L-prepend (beta-lemma w s t u) (fund t {s = wkSub w s `, u} (wkSubPresLₛ w sLδ `, uLx)) fund (app t u) {_Γ} {s} sLδ = L-cast (cong1 app (sym (wkTmPresId (substTm s t)))) (fund t sLδ idWk (fund u sLδ)) fund (box t) {_Γ} {s} sRδ = L-prepend (box-beta-lemma (substTm (keep#ₛ s) t)) (fund t (lock sRδ new)) fund (unbox t nil) {_Γ} {lock s e} (lock sRδ e) = unboxPresL {t = substTm s t} (fund t sRδ) e fund (unbox t (ext e)) (sRδ `, _uRx) = fund (unbox t e) sRδ -- The Fundamental theorem, extended to substitutions -- (not needed for tracing reduction of terms) Fundₛ : (S : Sub Δ Θ) → Set Fundₛ {Δ} {Θ} S = ∀ {Γ} {s : Sub Γ Δ} {δ : Sub' Γ Δ} → (sLδ : Lₛ Δ s δ) → Lₛ Θ (S ∙ₛ s) (evalₛ S δ) fundₛ : (S : Sub Δ Θ) → Fundₛ S fundₛ [] sLδ = [] fundₛ (S `, t) sLδ = fundₛ S sLδ `, fund t sLδ fundₛ (lock S nil) (lock sLδ e) = lock (fundₛ S sLδ) e fundₛ (lock S (ext e)) (sLδ `, _a) = fundₛ (lock S e) sLδ -- reduction trace for norm trace : (t : Tm Γ a) → t ⟶* embNf (norm t) trace t = L-build (L-cast (sym (substTmPresId t)) (fund t idLₛ))
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.