{-# OPTIONS --safe --without-K #-} open import Data.Product using (∃; _,_; -,_) renaming (_×_ to _∧_; proj₁ to fst; proj₂ to snd) open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst) module Semantics.Clouston.Evaluation.IML.Base (Ctx' : Set₁) (_→̇_ : (P Q : Ctx') → Set) (let infixr 19 _→̇_; _→̇_ = _→̇_) (_≈̇_ : {P Q : Ctx'} → (φ ψ : P →̇ Q) → Set) (let infix 18 _≈̇_; _≈̇_ = _≈̇_) (≈̇-refl : ∀ {P Q : Ctx'} {φ : P →̇ Q} → φ ≈̇ φ) (≈̇-sym : ∀ {P Q : Ctx'} {φ ψ : P →̇ Q} → (φ≈̇ψ : φ ≈̇ ψ) → ψ ≈̇ φ) (≈̇-trans : ∀ {P Q : Ctx'} {φ ψ ω : P →̇ Q} → (φ≈̇ψ : φ ≈̇ ψ) → (ψ≈̇ω : ψ ≈̇ ω) → φ ≈̇ ω) (_∘_ : {P Q R : Ctx'} → (ψ : Q →̇ R) → (φ : P →̇ Q) → (P →̇ R)) (let infixr 19 _∘_; _∘_ = _∘_) (let _[_]' = _∘_) (id'[_] : (P : Ctx') → P →̇ P) ([]' : Ctx') (unit' : {P : Ctx'} → P →̇ []') (_×'_ : (P Q : Ctx') → Ctx') (⟨_,_⟩' : {R P Q : Ctx'} → (φ : R →̇ P) → (ψ : R →̇ Q) → R →̇ P ×' Q) (π₁'[_] : {P : Ctx'} → (Q : Ctx') → P ×' Q →̇ P) (π₂'[_] : (P : Ctx') → {Q : Ctx'} → P ×' Q →̇ Q) (let fst'[_]_ = λ {R} {P} Q φ → _∘_ {R} {P ×' Q} {P} π₁'[ Q ] φ) (let snd'[_]_ = λ {R} P {Q} φ → _∘_ {R} {P ×' Q} {Q} π₂'[ P ] φ) (let _×'-map_ = λ {P} {P'} {Q} {Q'} φ ψ → ⟨_,_⟩' {P ×' Q} {P'} {Q'} (φ ∘ π₁'[ Q ]) (ψ ∘ π₂'[ P ])) (let Ty' = Ctx') (_⇒'_ : (P Q : Ty') → Ty') (lam' : {R P Q : Ty'} → (φ : R ×' P →̇ Q) → R →̇ P ⇒' Q) (app' : {R P Q : Ty'} → (φ : R →̇ P ⇒' Q) → (ψ : R →̇ P) → R →̇ Q) (✦'_ : (P : Ctx') → Ctx') (✦'-map_ : {P Q : Ctx'} → (φ : P →̇ Q) → ✦' P →̇ ✦' Q) (□'_ : (P : Ty') → Ty') (box' : {P Q : Ty'} → (φ : ✦' P →̇ Q) → P →̇ □' Q) (λ' : {P Q : Ty'} → (φ : P →̇ □' Q) → ✦' P →̇ Q) where open import Level using (0ℓ) open import Relation.Binary using (Reflexive; Symmetric; Transitive; IsEquivalence; Setoid) import Relation.Binary.Reasoning.Setoid as EqReasoning open import Type open import Context Ty Ty-Decidable ≈̇-equiv : ∀ (P Q : Ctx') → IsEquivalence (_≈̇_ {P} {Q}) ≈̇-equiv P Q = record { refl = ≈̇-refl {P} {Q} ; sym = ≈̇-sym {P} {Q} ; trans = ≈̇-trans {P} {Q} } →̇-setoid : (P Q : Ctx') → Setoid 0ℓ 0ℓ →̇-setoid P Q = record { Carrier = P →̇ Q ; _≈_ = _≈̇_ ; isEquivalence = ≈̇-equiv P Q } id' = λ {P} → id'[ P ] π₁' = λ {P} {Q} → π₁'[_] {P} Q π₁'[_][_] = λ P Q → π₁'[_] {P} Q π₂' = λ {P} {Q} → π₂'[_] P {Q} π₂'[_][_] = λ P Q → π₂'[_] P {Q} -- Δ' : {P P : Ctx'} → P →̇ P ×' P unbox' : {R P Q : Ty'} → (φ : P →̇ □' Q) → (ψ : R →̇ ✦' P) → R →̇ Q unbox' φ ψ = λ' φ ∘ ψ module Eval (N : Ty') where evalTy : (a : Ty) → Ty' evalTy ι = N evalTy (a ⇒ b) = evalTy a ⇒' evalTy b evalTy (□ a) = □' evalTy a evalCtx : (Γ : Ctx) → Ty' evalCtx [] = []' evalCtx (Γ `, a) = evalCtx Γ ×' evalTy a evalCtx (Γ #) = ✦' evalCtx Γ evalWk : (w : Γ ⊆ Δ) → evalCtx Δ →̇ evalCtx Γ evalWk base = unit' evalWk (drop {a = a} w) = evalWk w ∘ π₁'[ evalTy a ] evalWk (keep {a = a} w) = evalWk w ×'-map id'[ evalTy a ] evalWk (keep# w) = ✦'-map (evalWk w) evalVar : (v : Var Γ a) → evalCtx Γ →̇ evalTy a evalVar (zero {Γ}) = π₂'[ evalCtx Γ ] evalVar (succ {b = b} v) = evalVar v ∘ π₁'[ evalTy b ] Sub' = λ Δ Γ → evalCtx Δ →̇ evalCtx Γ Sub'-setoid = λ Δ Γ → →̇-setoid (evalCtx Δ) (evalCtx Γ) Tm' = λ Γ a → evalCtx Γ →̇ evalTy a Tm'-setoid = λ Γ a → →̇-setoid (evalCtx Γ) (evalTy a)
Generated from commit 2fd14c996b195ef101dff8919e837907ca0a08aa.